summaryrefslogtreecommitdiffstats
path: root/llvm/test/Analysis/ScalarEvolution/min-max-exprs.ll
blob: 208f369ac4a9096d2ddc68b53964acbc461c3e0a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py
; RUN: opt "-passes=print<scalar-evolution>" -disable-output < %s 2>&1 | FileCheck %s
;
; This checks if the min and max expressions are properly recognized by
; ScalarEvolution even though they the ICmpInst and SelectInst have different
; types.
;
;    #define max(a, b) (a > b ? a : b)
;    #define min(a, b) (a < b ? a : b)
;
;    void f(int *A, int N) {
;      for (int i = 0; i < N; i++) {
;        A[max(0, i - 3)] = A[min(N, i + 3)] * 2;
;      }
;    }
;
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"

define void @f(i32* %A, i32 %N) {
; CHECK-LABEL: 'f'
; CHECK-NEXT:  Classifying expressions for: @f
; CHECK-NEXT:    %i.0 = phi i32 [ 0, %bb ], [ %tmp23, %bb2 ]
; CHECK-NEXT:    --> {0,+,1}<nuw><nsw><%bb1> U: [0,-2147483648) S: [0,-2147483648) Exits: (0 smax %N) LoopDispositions: { %bb1: Computable }
; CHECK-NEXT:    %i.0.1 = sext i32 %i.0 to i64
; CHECK-NEXT:    --> {0,+,1}<nuw><nsw><%bb1> U: [0,2147483648) S: [0,2147483648) Exits: (zext i32 (0 smax %N) to i64) LoopDispositions: { %bb1: Computable }
; CHECK-NEXT:    %tmp3 = add nuw nsw i32 %i.0, 3
; CHECK-NEXT:    --> {3,+,1}<nuw><%bb1> U: [3,-2147483645) S: [3,-2147483645) Exits: (3 + (0 smax %N))<nuw> LoopDispositions: { %bb1: Computable }
; CHECK-NEXT:    %tmp5 = sext i32 %tmp3 to i64
; CHECK-NEXT:    --> (sext i32 {3,+,1}<nuw><%bb1> to i64) U: [-2147483648,2147483648) S: [-2147483648,2147483648) Exits: (sext i32 (3 + (0 smax %N))<nuw> to i64) LoopDispositions: { %bb1: Computable }
; CHECK-NEXT:    %tmp6 = sext i32 %N to i64
; CHECK-NEXT:    --> (sext i32 %N to i64) U: [-2147483648,2147483648) S: [-2147483648,2147483648) Exits: (sext i32 %N to i64) LoopDispositions: { %bb1: Invariant }
; CHECK-NEXT:    %tmp9 = select i1 %tmp4, i64 %tmp5, i64 %tmp6
; CHECK-NEXT:    --> ((sext i32 {3,+,1}<nuw><%bb1> to i64) smin (sext i32 %N to i64)) U: [-2147483648,2147483648) S: [-2147483648,2147483648) Exits: ((sext i32 (3 + (0 smax %N))<nuw> to i64) smin (sext i32 %N to i64)) LoopDispositions: { %bb1: Computable }
; CHECK-NEXT:    %tmp11 = getelementptr inbounds i32, i32* %A, i64 %tmp9
; CHECK-NEXT:    --> ((4 * ((sext i32 {3,+,1}<nuw><%bb1> to i64) smin (sext i32 %N to i64)))<nsw> + %A) U: full-set S: full-set Exits: ((4 * ((sext i32 (3 + (0 smax %N))<nuw> to i64) smin (sext i32 %N to i64)))<nsw> + %A) LoopDispositions: { %bb1: Computable }
; CHECK-NEXT:    %tmp12 = load i32, i32* %tmp11, align 4
; CHECK-NEXT:    --> %tmp12 U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb1: Variant }
; CHECK-NEXT:    %tmp13 = shl nsw i32 %tmp12, 1
; CHECK-NEXT:    --> (2 * %tmp12) U: [0,-1) S: [-2147483648,2147483647) Exits: <<Unknown>> LoopDispositions: { %bb1: Variant }
; CHECK-NEXT:    %tmp17 = add nsw i64 %i.0.1, -3
; CHECK-NEXT:    --> {-3,+,1}<nsw><%bb1> U: [-3,2147483645) S: [-3,2147483645) Exits: (-3 + (zext i32 (0 smax %N) to i64))<nsw> LoopDispositions: { %bb1: Computable }
; CHECK-NEXT:    %tmp19 = select i1 %tmp14, i64 0, i64 %tmp17
; CHECK-NEXT:    --> (-3 + (3 smax {0,+,1}<nuw><nsw><%bb1>))<nsw> U: [0,2147483645) S: [0,2147483645) Exits: (-3 + (3 smax (zext i32 (0 smax %N) to i64)))<nsw> LoopDispositions: { %bb1: Computable }
; CHECK-NEXT:    %tmp21 = getelementptr inbounds i32, i32* %A, i64 %tmp19
; CHECK-NEXT:    --> (-12 + (4 * (3 smax {0,+,1}<nuw><nsw><%bb1>))<nuw><nsw> + %A) U: full-set S: full-set Exits: (-12 + (4 * (3 smax (zext i32 (0 smax %N) to i64)))<nuw><nsw> + %A) LoopDispositions: { %bb1: Computable }
; CHECK-NEXT:    %tmp23 = add nuw nsw i32 %i.0, 1
; CHECK-NEXT:    --> {1,+,1}<nuw><%bb1> U: [1,-2147483647) S: [1,-2147483647) Exits: (1 + (0 smax %N))<nuw> LoopDispositions: { %bb1: Computable }
; CHECK-NEXT:  Determining loop execution counts for: @f
; CHECK-NEXT:  Loop %bb1: backedge-taken count is (0 smax %N)
; CHECK-NEXT:  Loop %bb1: max backedge-taken count is 2147483647
; CHECK-NEXT:  Loop %bb1: Predicated backedge-taken count is (0 smax %N)
; CHECK-NEXT:   Predicates:
; CHECK:       Loop %bb1: Trip multiple is 1
;
bb:
  br label %bb1

bb1:                                              ; preds = %bb2, %bb
  %i.0 = phi i32 [ 0, %bb ], [ %tmp23, %bb2 ]
  %i.0.1 = sext i32 %i.0 to i64
  %tmp = icmp slt i32 %i.0, %N
  br i1 %tmp, label %bb2, label %bb24

bb2:                                              ; preds = %bb1
  %tmp3 = add nuw nsw i32 %i.0, 3
  %tmp4 = icmp slt i32 %tmp3, %N
  %tmp5 = sext i32 %tmp3 to i64
  %tmp6 = sext i32 %N to i64
  %tmp9 = select i1 %tmp4, i64 %tmp5, i64 %tmp6
;                  min(N, i+3)
  %tmp11 = getelementptr inbounds i32, i32* %A, i64 %tmp9
  %tmp12 = load i32, i32* %tmp11, align 4
  %tmp13 = shl nsw i32 %tmp12, 1
  %tmp14 = icmp sge i32 3, %i.0
  %tmp17 = add nsw i64 %i.0.1, -3
  %tmp19 = select i1 %tmp14, i64 0, i64 %tmp17
;                  max(0, i - 3)
  %tmp21 = getelementptr inbounds i32, i32* %A, i64 %tmp19
  store i32 %tmp13, i32* %tmp21, align 4
  %tmp23 = add nuw nsw i32 %i.0, 1
  br label %bb1

bb24:                                             ; preds = %bb1
  ret void
}

define i8 @umax_basic_eq_off1(i8 %x, i8 %y) {
; CHECK-LABEL: 'umax_basic_eq_off1'
; CHECK-NEXT:  Classifying expressions for: @umax_basic_eq_off1
; CHECK-NEXT:    %lhs = add i8 %y, 1
; CHECK-NEXT:    --> (1 + %y) U: full-set S: full-set
; CHECK-NEXT:    %rhs = add i8 %x, %y
; CHECK-NEXT:    --> (%x + %y) U: full-set S: full-set
; CHECK-NEXT:    %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs
; CHECK-NEXT:    --> ((1 umax %x) + %y) U: full-set S: full-set
; CHECK-NEXT:  Determining loop execution counts for: @umax_basic_eq_off1
;
  %x.is.zero = icmp eq i8 %x, 0
  %lhs = add i8 %y, 1
  %rhs = add i8 %x, %y
  %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs
  ret i8 %r
}
define i8 @umax_basic_ne_off1(i8 %x, i8 %y) {
; CHECK-LABEL: 'umax_basic_ne_off1'
; CHECK-NEXT:  Classifying expressions for: @umax_basic_ne_off1
; CHECK-NEXT:    %lhs = add i8 %y, 1
; CHECK-NEXT:    --> (1 + %y) U: full-set S: full-set
; CHECK-NEXT:    %rhs = add i8 %x, %y
; CHECK-NEXT:    --> (%x + %y) U: full-set S: full-set
; CHECK-NEXT:    %r = select i1 %x.is.zero, i8 %rhs, i8 %lhs
; CHECK-NEXT:    --> ((1 umax %x) + %y) U: full-set S: full-set
; CHECK-NEXT:  Determining loop execution counts for: @umax_basic_ne_off1
;
  %x.is.zero = icmp ne i8 %x, 0
  %lhs = add i8 %y, 1
  %rhs = add i8 %x, %y
  %r = select i1 %x.is.zero, i8 %rhs, i8 %lhs
  ret i8 %r
}

define i8 @umax_basic_eq_off0(i8 %x, i8 %y) {
; CHECK-LABEL: 'umax_basic_eq_off0'
; CHECK-NEXT:  Classifying expressions for: @umax_basic_eq_off0
; CHECK-NEXT:    %lhs = add i8 %y, 0
; CHECK-NEXT:    --> %y U: full-set S: full-set
; CHECK-NEXT:    %rhs = add i8 %x, %y
; CHECK-NEXT:    --> (%x + %y) U: full-set S: full-set
; CHECK-NEXT:    %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs
; CHECK-NEXT:    --> (%x + %y) U: full-set S: full-set
; CHECK-NEXT:  Determining loop execution counts for: @umax_basic_eq_off0
;
  %x.is.zero = icmp eq i8 %x, 0
  %lhs = add i8 %y, 0
  %rhs = add i8 %x, %y
  %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs
  ret i8 %r
}

define i8 @umax_basic_eq_off2(i8 %x, i8 %y) {
; CHECK-LABEL: 'umax_basic_eq_off2'
; CHECK-NEXT:  Classifying expressions for: @umax_basic_eq_off2
; CHECK-NEXT:    %lhs = add i8 %y, 2
; CHECK-NEXT:    --> (2 + %y) U: full-set S: full-set
; CHECK-NEXT:    %rhs = add i8 %x, %y
; CHECK-NEXT:    --> (%x + %y) U: full-set S: full-set
; CHECK-NEXT:    %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs
; CHECK-NEXT:    --> %r U: full-set S: full-set
; CHECK-NEXT:  Determining loop execution counts for: @umax_basic_eq_off2
;
  %x.is.zero = icmp eq i8 %x, 0
  %lhs = add i8 %y, 2
  %rhs = add i8 %x, %y
  %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs
  ret i8 %r
}

define i8 @umax_basic_eq_var_off(i8 %x, i8 %y, i8 %c) {
; CHECK-LABEL: 'umax_basic_eq_var_off'
; CHECK-NEXT:  Classifying expressions for: @umax_basic_eq_var_off
; CHECK-NEXT:    %lhs = add i8 %y, %c
; CHECK-NEXT:    --> (%y + %c) U: full-set S: full-set
; CHECK-NEXT:    %rhs = add i8 %x, %y
; CHECK-NEXT:    --> (%x + %y) U: full-set S: full-set
; CHECK-NEXT:    %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs
; CHECK-NEXT:    --> %r U: full-set S: full-set
; CHECK-NEXT:  Determining loop execution counts for: @umax_basic_eq_var_off
;
  %x.is.zero = icmp eq i8 %x, 0
  %lhs = add i8 %y, %c
  %rhs = add i8 %x, %y
  %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs
  ret i8 %r
}

define i8 @umax_basic_eq_narrow(i4 %x.narrow, i8 %y) {
; CHECK-LABEL: 'umax_basic_eq_narrow'
; CHECK-NEXT:  Classifying expressions for: @umax_basic_eq_narrow
; CHECK-NEXT:    %x = zext i4 %x.narrow to i8
; CHECK-NEXT:    --> (zext i4 %x.narrow to i8) U: [0,16) S: [0,16)
; CHECK-NEXT:    %lhs = add i8 %y, 1
; CHECK-NEXT:    --> (1 + %y) U: full-set S: full-set
; CHECK-NEXT:    %rhs = add i8 %x, %y
; CHECK-NEXT:    --> ((zext i4 %x.narrow to i8) + %y) U: full-set S: full-set
; CHECK-NEXT:    %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs
; CHECK-NEXT:    --> ((1 umax (zext i4 %x.narrow to i8)) + %y) U: full-set S: full-set
; CHECK-NEXT:  Determining loop execution counts for: @umax_basic_eq_narrow
;
  %x = zext i4 %x.narrow to i8
  %x.is.zero = icmp eq i4 %x.narrow, 0
  %lhs = add i8 %y, 1
  %rhs = add i8 %x, %y
  %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs
  ret i8 %r
}
define i8 @umax_basic_ne_narrow(i4 %x.narrow, i8 %y) {
; CHECK-LABEL: 'umax_basic_ne_narrow'
; CHECK-NEXT:  Classifying expressions for: @umax_basic_ne_narrow
; CHECK-NEXT:    %x = zext i4 %x.narrow to i8
; CHECK-NEXT:    --> (zext i4 %x.narrow to i8) U: [0,16) S: [0,16)
; CHECK-NEXT:    %lhs = add i8 %y, 1
; CHECK-NEXT:    --> (1 + %y) U: full-set S: full-set
; CHECK-NEXT:    %rhs = add i8 %x, %y
; CHECK-NEXT:    --> ((zext i4 %x.narrow to i8) + %y) U: full-set S: full-set
; CHECK-NEXT:    %r = select i1 %x.is.zero, i8 %rhs, i8 %lhs
; CHECK-NEXT:    --> ((1 umax (zext i4 %x.narrow to i8)) + %y) U: full-set S: full-set
; CHECK-NEXT:  Determining loop execution counts for: @umax_basic_ne_narrow
;
  %x = zext i4 %x.narrow to i8
  %x.is.zero = icmp ne i4 %x.narrow, 0
  %lhs = add i8 %y, 1
  %rhs = add i8 %x, %y
  %r = select i1 %x.is.zero, i8 %rhs, i8 %lhs
  ret i8 %r
}