summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp
blob: 97cafbce66f9d5e7b2d8bdb0ca3a9b461465a397 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
//===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Eliminate conditions based on constraints collected from dominating
// conditions.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/ConstraintElimination.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ConstraintSystem.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DebugCounter.h"
#include "llvm/Transforms/Scalar.h"

#include <string>

using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "constraint-elimination"

STATISTIC(NumCondsRemoved, "Number of instructions removed");
DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
              "Controls which conditions are eliminated");

static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();

namespace {

/// Wrapper encapsulating separate constraint systems and corresponding value
/// mappings for both unsigned and signed information. Facts are added to and
/// conditions are checked against the corresponding system depending on the
/// signed-ness of their predicates. While the information is kept separate
/// based on signed-ness, certain conditions can be transferred between the two
/// systems.
class ConstraintInfo {
  DenseMap<Value *, unsigned> UnsignedValue2Index;
  DenseMap<Value *, unsigned> SignedValue2Index;

  ConstraintSystem UnsignedCS;
  ConstraintSystem SignedCS;

public:
  DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
    return Signed ? SignedValue2Index : UnsignedValue2Index;
  }
  const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
    return Signed ? SignedValue2Index : UnsignedValue2Index;
  }

  ConstraintSystem &getCS(bool Signed) {
    return Signed ? SignedCS : UnsignedCS;
  }
  const ConstraintSystem &getCS(bool Signed) const {
    return Signed ? SignedCS : UnsignedCS;
  }

  void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
};

/// Struct to express a pre-condition of the form %Op0 Pred %Op1.
struct PreconditionTy {
  CmpInst::Predicate Pred;
  Value *Op0;
  Value *Op1;

  PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
      : Pred(Pred), Op0(Op0), Op1(Op1) {}
};

struct ConstraintTy {
  SmallVector<int64_t, 8> Coefficients;

  bool IsSigned;

  ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned)
      : Coefficients(Coefficients), IsSigned(IsSigned) {}

  unsigned size() const { return Coefficients.size(); }
};

/// Struct to manage a list of constraints with pre-conditions that must be
/// satisfied before using the constraints.
struct ConstraintListTy {
  SmallVector<ConstraintTy, 4> Constraints;
  SmallVector<PreconditionTy, 4> Preconditions;

  ConstraintListTy() = default;

  ConstraintListTy(ArrayRef<ConstraintTy> Constraints,
                   ArrayRef<PreconditionTy> Preconditions)
      : Constraints(Constraints.begin(), Constraints.end()),
        Preconditions(Preconditions.begin(), Preconditions.end()) {}

  void mergeIn(const ConstraintListTy &Other) {
    append_range(Constraints, Other.Constraints);
    // TODO: Do smarter merges here, e.g. exclude duplicates.
    append_range(Preconditions, Other.Preconditions);
  }

  unsigned size() const { return Constraints.size(); }

  unsigned empty() const { return Constraints.empty(); }

  /// Returns true if any constraint has a non-zero coefficient for any of the
  /// newly added indices. Zero coefficients for new indices are removed. If it
  /// returns true, no new variable need to be added to the system.
  bool needsNewIndices(const DenseMap<Value *, unsigned> &NewIndices) {
    assert(size() == 1);
    for (unsigned I = 0; I < NewIndices.size(); ++I) {
      int64_t Last = get(0).Coefficients.pop_back_val();
      if (Last != 0)
        return true;
    }
    return false;
  }

  ConstraintTy &get(unsigned I) { return Constraints[I]; }

  /// Returns true if all preconditions for this list of constraints are
  /// satisfied given \p CS and the corresponding \p Value2Index mapping.
  bool isValid(const ConstraintInfo &Info) const;

  /// Returns true if there is exactly one constraint in the list and isValid is
  /// also true.
  bool isValidSingle(const ConstraintInfo &Info) const {
    if (size() != 1)
      return false;
    return isValid(Info);
  }
};

} // namespace

// Decomposes \p V into a vector of pairs of the form { c, X } where c * X. The
// sum of the pairs equals \p V.  The first pair is the constant-factor and X
// must be nullptr. If the expression cannot be decomposed, returns an empty
// vector.
static SmallVector<std::pair<int64_t, Value *>, 4>
decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions,
          bool IsSigned) {

  // Decompose \p V used with a signed predicate.
  if (IsSigned) {
    if (auto *CI = dyn_cast<ConstantInt>(V)) {
      const APInt &Val = CI->getValue();
      if (Val.sle(MinSignedConstraintValue) || Val.sge(MaxConstraintValue))
        return {};
      return {{CI->getSExtValue(), nullptr}};
    }

    return {{0, nullptr}, {1, V}};
  }

  if (auto *CI = dyn_cast<ConstantInt>(V)) {
    if (CI->isNegative() || CI->uge(MaxConstraintValue))
      return {};
    return {{CI->getSExtValue(), nullptr}};
  }
  auto *GEP = dyn_cast<GetElementPtrInst>(V);
  if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) {
    Value *Op0, *Op1;
    ConstantInt *CI;

    // If the index is zero-extended, it is guaranteed to be positive.
    if (match(GEP->getOperand(GEP->getNumOperands() - 1),
              m_ZExt(m_Value(Op0)))) {
      if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))))
        return {{0, nullptr},
                {1, GEP->getPointerOperand()},
                {std::pow(int64_t(2), CI->getSExtValue()), Op1}};
      if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI))))
        return {{CI->getSExtValue(), nullptr},
                {1, GEP->getPointerOperand()},
                {1, Op1}};
      return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
    }

    if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) &&
        !CI->isNegative())
      return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}};

    SmallVector<std::pair<int64_t, Value *>, 4> Result;
    if (match(GEP->getOperand(GEP->getNumOperands() - 1),
              m_NUWShl(m_Value(Op0), m_ConstantInt(CI))))
      Result = {{0, nullptr},
                {1, GEP->getPointerOperand()},
                {std::pow(int64_t(2), CI->getSExtValue()), Op0}};
    else if (match(GEP->getOperand(GEP->getNumOperands() - 1),
                   m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))))
      Result = {{CI->getSExtValue(), nullptr},
                {1, GEP->getPointerOperand()},
                {1, Op0}};
    else {
      Op0 = GEP->getOperand(GEP->getNumOperands() - 1);
      Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
    }
    // If Op0 is signed non-negative, the GEP is increasing monotonically and
    // can be de-composed.
    Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
                               ConstantInt::get(Op0->getType(), 0));
    return Result;
  }

  Value *Op0;
  if (match(V, m_ZExt(m_Value(Op0))))
    V = Op0;

  Value *Op1;
  ConstantInt *CI;
  if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI))))
    return {{CI->getSExtValue(), nullptr}, {1, Op0}};
  if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1))))
    return {{0, nullptr}, {1, Op0}, {1, Op1}};

  if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))))
    return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}};
  if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
    return {{0, nullptr}, {1, Op0}, {-1, Op1}};

  return {{0, nullptr}, {1, V}};
}

/// Turn a condition \p CmpI into a vector of constraints, using indices from \p
/// Value2Index. Additional indices for newly discovered values are added to \p
/// NewIndices.
static ConstraintListTy
getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
              const DenseMap<Value *, unsigned> &Value2Index,
              DenseMap<Value *, unsigned> &NewIndices) {
  // Try to convert Pred to one of ULE/SLT/SLE/SLT.
  switch (Pred) {
  case CmpInst::ICMP_UGT:
  case CmpInst::ICMP_UGE:
  case CmpInst::ICMP_SGT:
  case CmpInst::ICMP_SGE: {
    Pred = CmpInst::getSwappedPredicate(Pred);
    std::swap(Op0, Op1);
    break;
  }
  case CmpInst::ICMP_EQ:
    if (match(Op1, m_Zero())) {
      Pred = CmpInst::ICMP_ULE;
    } else {
      auto A =
          getConstraint(CmpInst::ICMP_UGE, Op0, Op1, Value2Index, NewIndices);
      auto B =
          getConstraint(CmpInst::ICMP_ULE, Op0, Op1, Value2Index, NewIndices);
      A.mergeIn(B);
      return A;
    }
    break;
  case CmpInst::ICMP_NE:
    if (!match(Op1, m_Zero()))
      return {};
    Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
    std::swap(Op0, Op1);
    break;
  default:
    break;
  }

  // Only ULE and ULT predicates are supported at the moment.
  if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
      Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
    return {};

  SmallVector<PreconditionTy, 4> Preconditions;
  bool IsSigned = CmpInst::isSigned(Pred);
  auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
                        Preconditions, IsSigned);
  auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
                        Preconditions, IsSigned);
  // Skip if decomposing either of the values failed.
  if (ADec.empty() || BDec.empty())
    return {};

  // Skip trivial constraints without any variables.
  if (ADec.size() == 1 && BDec.size() == 1)
    return {};

  int64_t Offset1 = ADec[0].first;
  int64_t Offset2 = BDec[0].first;
  Offset1 *= -1;

  // Create iterator ranges that skip the constant-factor.
  auto VariablesA = llvm::drop_begin(ADec);
  auto VariablesB = llvm::drop_begin(BDec);

  // First try to look up \p V in Value2Index and NewIndices. Otherwise add a
  // new entry to NewIndices.
  auto GetOrAddIndex = [&Value2Index, &NewIndices](Value *V) -> unsigned {
    auto V2I = Value2Index.find(V);
    if (V2I != Value2Index.end())
      return V2I->second;
    auto Insert =
        NewIndices.insert({V, Value2Index.size() + NewIndices.size() + 1});
    return Insert.first->second;
  };

  // Make sure all variables have entries in Value2Index or NewIndices.
  for (const auto &KV :
       concat<std::pair<int64_t, Value *>>(VariablesA, VariablesB))
    GetOrAddIndex(KV.second);

  // Build result constraint, by first adding all coefficients from A and then
  // subtracting all coefficients from B.
  SmallVector<int64_t, 8> R(Value2Index.size() + NewIndices.size() + 1, 0);
  for (const auto &KV : VariablesA)
    R[GetOrAddIndex(KV.second)] += KV.first;

  for (const auto &KV : VariablesB)
    R[GetOrAddIndex(KV.second)] -= KV.first;

  R[0] = Offset1 + Offset2 +
         (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT) ? -1 : 0);
  return {{{R, IsSigned}}, Preconditions};
}

static ConstraintListTy getConstraint(CmpInst *Cmp, ConstraintInfo &Info,
                                      DenseMap<Value *, unsigned> &NewIndices) {
  return getConstraint(
      Cmp->getPredicate(), Cmp->getOperand(0), Cmp->getOperand(1),
      Info.getValue2Index(CmpInst::isSigned(Cmp->getPredicate())), NewIndices);
}

bool ConstraintListTy::isValid(const ConstraintInfo &Info) const {
  return all_of(Preconditions, [&Info](const PreconditionTy &C) {
    DenseMap<Value *, unsigned> NewIndices;
    auto R = getConstraint(C.Pred, C.Op0, C.Op1,
                           Info.getValue2Index(CmpInst::isSigned(C.Pred)),
                           NewIndices);
    // TODO: properly check NewIndices.
    return NewIndices.empty() && R.Preconditions.empty() && R.size() == 1 &&
           Info.getCS(CmpInst::isSigned(C.Pred))
               .isConditionImplied(R.get(0).Coefficients);
  });
}

namespace {
/// Represents either a condition that holds on entry to a block or a basic
/// block, with their respective Dominator DFS in and out numbers.
struct ConstraintOrBlock {
  unsigned NumIn;
  unsigned NumOut;
  bool IsBlock;
  bool Not;
  union {
    BasicBlock *BB;
    CmpInst *Condition;
  };

  ConstraintOrBlock(DomTreeNode *DTN)
      : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true),
        BB(DTN->getBlock()) {}
  ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not)
      : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false),
        Not(Not), Condition(Condition) {}
};

struct StackEntry {
  unsigned NumIn;
  unsigned NumOut;
  Instruction *Condition;
  bool IsNot;
  bool IsSigned = false;

  StackEntry(unsigned NumIn, unsigned NumOut, Instruction *Condition,
             bool IsNot, bool IsSigned)
      : NumIn(NumIn), NumOut(NumOut), Condition(Condition), IsNot(IsNot),
        IsSigned(IsSigned) {}
};
} // namespace

#ifndef NDEBUG
static void dumpWithNames(ConstraintTy &C,
                          DenseMap<Value *, unsigned> &Value2Index) {
  SmallVector<std::string> Names(Value2Index.size(), "");
  for (auto &KV : Value2Index) {
    Names[KV.second - 1] = std::string("%") + KV.first->getName().str();
  }
  ConstraintSystem CS;
  CS.addVariableRowFill(C.Coefficients);
  CS.dump(Names);
}
#endif

static bool eliminateConstraints(Function &F, DominatorTree &DT) {
  bool Changed = false;
  DT.updateDFSNumbers();

  ConstraintInfo Info;

  SmallVector<ConstraintOrBlock, 64> WorkList;

  // First, collect conditions implied by branches and blocks with their
  // Dominator DFS in and out numbers.
  for (BasicBlock &BB : F) {
    if (!DT.getNode(&BB))
      continue;
    WorkList.emplace_back(DT.getNode(&BB));

    // True as long as long as the current instruction is guaranteed to execute.
    bool GuaranteedToExecute = true;
    // Scan BB for assume calls.
    // TODO: also use this scan to queue conditions to simplify, so we can
    // interleave facts from assumes and conditions to simplify in a single
    // basic block. And to skip another traversal of each basic block when
    // simplifying.
    for (Instruction &I : BB) {
      Value *Cond;
      // For now, just handle assumes with a single compare as condition.
      if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) &&
          isa<ICmpInst>(Cond)) {
        if (GuaranteedToExecute) {
          // The assume is guaranteed to execute when BB is entered, hence Cond
          // holds on entry to BB.
          WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false);
        } else {
          // Otherwise the condition only holds in the successors.
          for (BasicBlock *Succ : successors(&BB))
            WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond),
                                  false);
        }
      }
      GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
    }

    auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
    if (!Br || !Br->isConditional())
      continue;

    // Returns true if we can add a known condition from BB to its successor
    // block Succ. Each predecessor of Succ can either be BB or be dominated by
    // Succ (e.g. the case when adding a condition from a pre-header to a loop
    // header).
    auto CanAdd = [&BB, &DT](BasicBlock *Succ) {
      assert(isa<BranchInst>(BB.getTerminator()));
      return any_of(successors(&BB),
                    [Succ](const BasicBlock *S) { return S != Succ; }) &&
             all_of(predecessors(Succ), [&BB, &DT, Succ](BasicBlock *Pred) {
               return Pred == &BB || DT.dominates(Succ, Pred);
             });
    };
    // If the condition is an OR of 2 compares and the false successor only has
    // the current block as predecessor, queue both negated conditions for the
    // false successor.
    Value *Op0, *Op1;
    if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) &&
        isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) {
      BasicBlock *FalseSuccessor = Br->getSuccessor(1);
      if (CanAdd(FalseSuccessor)) {
        WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op0),
                              true);
        WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op1),
                              true);
      }
      continue;
    }

    // If the condition is an AND of 2 compares and the true successor only has
    // the current block as predecessor, queue both conditions for the true
    // successor.
    if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) &&
        isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) {
      BasicBlock *TrueSuccessor = Br->getSuccessor(0);
      if (CanAdd(TrueSuccessor)) {
        WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op0),
                              false);
        WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op1),
                              false);
      }
      continue;
    }

    auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
    if (!CmpI)
      continue;
    if (CanAdd(Br->getSuccessor(0)))
      WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false);
    if (CanAdd(Br->getSuccessor(1)))
      WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true);
  }

  // Next, sort worklist by dominance, so that dominating blocks and conditions
  // come before blocks and conditions dominated by them. If a block and a
  // condition have the same numbers, the condition comes before the block, as
  // it holds on entry to the block.
  sort(WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) {
    return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock);
  });

  // Finally, process ordered worklist and eliminate implied conditions.
  SmallVector<StackEntry, 16> DFSInStack;
  for (ConstraintOrBlock &CB : WorkList) {
    // First, pop entries from the stack that are out-of-scope for CB. Remove
    // the corresponding entry from the constraint system.
    while (!DFSInStack.empty()) {
      auto &E = DFSInStack.back();
      LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
                        << "\n");
      LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
      assert(E.NumIn <= CB.NumIn);
      if (CB.NumOut <= E.NumOut)
        break;
      LLVM_DEBUG(dbgs() << "Removing " << *E.Condition << " " << E.IsNot
                        << "\n");
      DFSInStack.pop_back();
      Info.popLastConstraint(E.IsSigned);
    }

    LLVM_DEBUG({
      dbgs() << "Processing ";
      if (CB.IsBlock)
        dbgs() << *CB.BB;
      else
        dbgs() << *CB.Condition;
      dbgs() << "\n";
    });

    // For a block, check if any CmpInsts become known based on the current set
    // of constraints.
    if (CB.IsBlock) {
      for (Instruction &I : *CB.BB) {
        auto *Cmp = dyn_cast<ICmpInst>(&I);
        if (!Cmp)
          continue;

        DenseMap<Value *, unsigned> NewIndices;
        auto R = getConstraint(Cmp, Info, NewIndices);
        if (!R.isValidSingle(Info) || R.needsNewIndices(NewIndices))
          continue;

        auto &CSToUse = Info.getCS(R.get(0).IsSigned);
        if (CSToUse.isConditionImplied(R.get(0).Coefficients)) {
          if (!DebugCounter::shouldExecute(EliminatedCounter))
            continue;

          LLVM_DEBUG(dbgs() << "Condition " << *Cmp
                            << " implied by dominating constraints\n");
          LLVM_DEBUG({
            for (auto &E : reverse(DFSInStack))
              dbgs() << "   C " << *E.Condition << " " << E.IsNot << "\n";
          });
          Cmp->replaceUsesWithIf(
              ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) {
                // Conditions in an assume trivially simplify to true. Skip uses
                // in assume calls to not destroy the available information.
                auto *II = dyn_cast<IntrinsicInst>(U.getUser());
                return !II || II->getIntrinsicID() != Intrinsic::assume;
              });
          NumCondsRemoved++;
          Changed = true;
        }
        if (CSToUse.isConditionImplied(
                ConstraintSystem::negate(R.get(0).Coefficients))) {
          if (!DebugCounter::shouldExecute(EliminatedCounter))
            continue;

          LLVM_DEBUG(dbgs() << "Condition !" << *Cmp
                            << " implied by dominating constraints\n");
          LLVM_DEBUG({
            for (auto &E : reverse(DFSInStack))
              dbgs() << "   C " << *E.Condition << " " << E.IsNot << "\n";
          });
          Cmp->replaceAllUsesWith(
              ConstantInt::getFalse(F.getParent()->getContext()));
          NumCondsRemoved++;
          Changed = true;
        }
      }
      continue;
    }

    // Set up a function to restore the predicate at the end of the scope if it
    // has been negated. Negate the predicate in-place, if required.
    auto *CI = dyn_cast<ICmpInst>(CB.Condition);
    auto PredicateRestorer = make_scope_exit([CI, &CB]() {
      if (CB.Not && CI)
        CI->setPredicate(CI->getInversePredicate());
    });
    if (CB.Not) {
      if (CI) {
        CI->setPredicate(CI->getInversePredicate());
      } else {
        LLVM_DEBUG(dbgs() << "Can only negate compares so far.\n");
        continue;
      }
    }

    // Otherwise, add the condition to the system and stack, if we can transform
    // it into a constraint.
    DenseMap<Value *, unsigned> NewIndices;
    auto R = getConstraint(CB.Condition, Info, NewIndices);
    if (!R.isValid(Info))
      continue;

    for (auto &KV : NewIndices)
      Info.getValue2Index(CmpInst::isSigned(CB.Condition->getPredicate()))
          .insert(KV);

    LLVM_DEBUG(dbgs() << "Adding " << *CB.Condition << " " << CB.Not << "\n");
    bool Added = false;
    for (auto &E : R.Constraints) {
      auto &CSToUse = Info.getCS(E.IsSigned);
      if (E.Coefficients.empty())
        continue;

      LLVM_DEBUG({
        dbgs() << "  constraint: ";
        dumpWithNames(E, Info.getValue2Index(E.IsSigned));
      });

      Added |= CSToUse.addVariableRowFill(E.Coefficients);

      // If R has been added to the system, queue it for removal once it goes
      // out-of-scope.
      if (Added)
        DFSInStack.emplace_back(CB.NumIn, CB.NumOut, CB.Condition, CB.Not,
                                E.IsSigned);
    }
  }

#ifndef NDEBUG
  unsigned SignedEntries =
      count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
  assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries &&
         "updates to CS and DFSInStack are out of sync");
  assert(Info.getCS(true).size() == SignedEntries &&
         "updates to CS and DFSInStack are out of sync");
#endif

  return Changed;
}

PreservedAnalyses ConstraintEliminationPass::run(Function &F,
                                                 FunctionAnalysisManager &AM) {
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  if (!eliminateConstraints(F, DT))
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserve<DominatorTreeAnalysis>();
  PA.preserveSet<CFGAnalyses>();
  return PA;
}

namespace {

class ConstraintElimination : public FunctionPass {
public:
  static char ID;

  ConstraintElimination() : FunctionPass(ID) {
    initializeConstraintEliminationPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    return eliminateConstraints(F, DT);
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addPreserved<GlobalsAAWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
  }
};

} // end anonymous namespace

char ConstraintElimination::ID = 0;

INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination",
                      "Constraint Elimination", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination",
                    "Constraint Elimination", false, false)

FunctionPass *llvm::createConstraintEliminationPass() {
  return new ConstraintElimination();
}