summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target/AMDGPU/SIModeRegister.cpp
blob: 24a8879b5684c926d6bced994d671def42965981 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
//===-- SIModeRegister.cpp - Mode Register --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This pass inserts changes to the Mode register settings as required.
/// Note that currently it only deals with the Double Precision Floating Point
/// rounding mode setting, but is intended to be generic enough to be easily
/// expanded.
///
//===----------------------------------------------------------------------===//
//
#include "AMDGPU.h"
#include "GCNSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/ADT/Statistic.h"
#include <queue>

#define DEBUG_TYPE "si-mode-register"

STATISTIC(NumSetregInserted, "Number of setreg of mode register inserted.");

using namespace llvm;

struct Status {
  // Mask is a bitmask where a '1' indicates the corresponding Mode bit has a
  // known value
  unsigned Mask;
  unsigned Mode;

  Status() : Mask(0), Mode(0){};

  Status(unsigned NewMask, unsigned NewMode) : Mask(NewMask), Mode(NewMode) {
    Mode &= Mask;
  };

  // merge two status values such that only values that don't conflict are
  // preserved
  Status merge(const Status &S) const {
    return Status((Mask | S.Mask), ((Mode & ~S.Mask) | (S.Mode & S.Mask)));
  }

  // merge an unknown value by using the unknown value's mask to remove bits
  // from the result
  Status mergeUnknown(unsigned newMask) {
    return Status(Mask & ~newMask, Mode & ~newMask);
  }

  // intersect two Status values to produce a mode and mask that is a subset
  // of both values
  Status intersect(const Status &S) const {
    unsigned NewMask = (Mask & S.Mask) & (Mode ^ ~S.Mode);
    unsigned NewMode = (Mode & NewMask);
    return Status(NewMask, NewMode);
  }

  // produce the delta required to change the Mode to the required Mode
  Status delta(const Status &S) const {
    return Status((S.Mask & (Mode ^ S.Mode)) | (~Mask & S.Mask), S.Mode);
  }

  bool operator==(const Status &S) const {
    return (Mask == S.Mask) && (Mode == S.Mode);
  }

  bool operator!=(const Status &S) const { return !(*this == S); }

  bool isCompatible(Status &S) {
    return ((Mask & S.Mask) == S.Mask) && ((Mode & S.Mask) == S.Mode);
  }

  bool isCombinable(Status &S) { return !(Mask & S.Mask) || isCompatible(S); }
};

class BlockData {
public:
  // The Status that represents the mode register settings required by the
  // FirstInsertionPoint (if any) in this block. Calculated in Phase 1.
  Status Require;

  // The Status that represents the net changes to the Mode register made by
  // this block, Calculated in Phase 1.
  Status Change;

  // The Status that represents the mode register settings on exit from this
  // block. Calculated in Phase 2.
  Status Exit;

  // The Status that represents the intersection of exit Mode register settings
  // from all predecessor blocks. Calculated in Phase 2, and used by Phase 3.
  Status Pred;

  // In Phase 1 we record the first instruction that has a mode requirement,
  // which is used in Phase 3 if we need to insert a mode change.
  MachineInstr *FirstInsertionPoint;

  // A flag to indicate whether an Exit value has been set (we can't tell by
  // examining the Exit value itself as all values may be valid results).
  bool ExitSet;

  BlockData() : FirstInsertionPoint(nullptr), ExitSet(false){};
};

namespace {

class SIModeRegister : public MachineFunctionPass {
public:
  static char ID;

  std::vector<std::unique_ptr<BlockData>> BlockInfo;
  std::queue<MachineBasicBlock *> Phase2List;

  // The default mode register setting currently only caters for the floating
  // point double precision rounding mode.
  // We currently assume the default rounding mode is Round to Nearest
  // NOTE: this should come from a per function rounding mode setting once such
  // a setting exists.
  unsigned DefaultMode = FP_ROUND_ROUND_TO_NEAREST;
  Status DefaultStatus =
      Status(FP_ROUND_MODE_DP(0x3), FP_ROUND_MODE_DP(DefaultMode));

  bool Changed = false;

public:
  SIModeRegister() : MachineFunctionPass(ID) {}

  bool runOnMachineFunction(MachineFunction &MF) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    MachineFunctionPass::getAnalysisUsage(AU);
  }

  void processBlockPhase1(MachineBasicBlock &MBB, const SIInstrInfo *TII);

  void processBlockPhase2(MachineBasicBlock &MBB, const SIInstrInfo *TII);

  void processBlockPhase3(MachineBasicBlock &MBB, const SIInstrInfo *TII);

  Status getInstructionMode(MachineInstr &MI, const SIInstrInfo *TII);

  void insertSetreg(MachineBasicBlock &MBB, MachineInstr *I,
                    const SIInstrInfo *TII, Status InstrMode);
};
} // End anonymous namespace.

INITIALIZE_PASS(SIModeRegister, DEBUG_TYPE,
                "Insert required mode register values", false, false)

char SIModeRegister::ID = 0;

char &llvm::SIModeRegisterID = SIModeRegister::ID;

FunctionPass *llvm::createSIModeRegisterPass() { return new SIModeRegister(); }

// Determine the Mode register setting required for this instruction.
// Instructions which don't use the Mode register return a null Status.
// Note this currently only deals with instructions that use the floating point
// double precision setting.
Status SIModeRegister::getInstructionMode(MachineInstr &MI,
                                          const SIInstrInfo *TII) {
  if (TII->usesFPDPRounding(MI)) {
    switch (MI.getOpcode()) {
    case AMDGPU::V_INTERP_P1LL_F16:
    case AMDGPU::V_INTERP_P1LV_F16:
    case AMDGPU::V_INTERP_P2_F16:
      // f16 interpolation instructions need double precision round to zero
      return Status(FP_ROUND_MODE_DP(3),
                    FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_ZERO));
    default:
      return DefaultStatus;
    }
  }
  return Status();
}

// Insert a setreg instruction to update the Mode register.
// It is possible (though unlikely) for an instruction to require a change to
// the value of disjoint parts of the Mode register when we don't know the
// value of the intervening bits. In that case we need to use more than one
// setreg instruction.
void SIModeRegister::insertSetreg(MachineBasicBlock &MBB, MachineInstr *MI,
                                  const SIInstrInfo *TII, Status InstrMode) {
  while (InstrMode.Mask) {
    unsigned Offset = countTrailingZeros<unsigned>(InstrMode.Mask);
    unsigned Width = countTrailingOnes<unsigned>(InstrMode.Mask >> Offset);
    unsigned Value = (InstrMode.Mode >> Offset) & ((1 << Width) - 1);
    BuildMI(MBB, MI, nullptr, TII->get(AMDGPU::S_SETREG_IMM32_B32))
        .addImm(Value)
        .addImm(((Width - 1) << AMDGPU::Hwreg::WIDTH_M1_SHIFT_) |
                (Offset << AMDGPU::Hwreg::OFFSET_SHIFT_) |
                (AMDGPU::Hwreg::ID_MODE << AMDGPU::Hwreg::ID_SHIFT_));
    ++NumSetregInserted;
    Changed = true;
    InstrMode.Mask &= ~(((1 << Width) - 1) << Offset);
  }
}

// In Phase 1 we iterate through the instructions of the block and for each
// instruction we get its mode usage. If the instruction uses the Mode register
// we:
// - update the Change status, which tracks the changes to the Mode register
//   made by this block
// - if this instruction's requirements are compatible with the current setting
//   of the Mode register we merge the modes
// - if it isn't compatible and an InsertionPoint isn't set, then we set the
//   InsertionPoint to the current instruction, and we remember the current
//   mode
// - if it isn't compatible and InsertionPoint is set we insert a seteg before
//   that instruction (unless this instruction forms part of the block's
//   entry requirements in which case the insertion is deferred until Phase 3
//   when predecessor exit values are known), and move the insertion point to
//   this instruction
// - if this is a setreg instruction we treat it as an incompatible instruction.
//   This is sub-optimal but avoids some nasty corner cases, and is expected to
//   occur very rarely.
// - on exit we have set the Require, Change, and initial Exit modes.
void SIModeRegister::processBlockPhase1(MachineBasicBlock &MBB,
                                        const SIInstrInfo *TII) {
  auto NewInfo = std::make_unique<BlockData>();
  MachineInstr *InsertionPoint = nullptr;
  // RequirePending is used to indicate whether we are collecting the initial
  // requirements for the block, and need to defer the first InsertionPoint to
  // Phase 3. It is set to false once we have set FirstInsertionPoint, or when
  // we discover an explicit setreg that means this block doesn't have any
  // initial requirements.
  bool RequirePending = true;
  Status IPChange;
  for (MachineInstr &MI : MBB) {
    Status InstrMode = getInstructionMode(MI, TII);
    if (MI.getOpcode() == AMDGPU::S_SETREG_B32 ||
        MI.getOpcode() == AMDGPU::S_SETREG_B32_mode ||
        MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32 ||
        MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32_mode) {
      // We preserve any explicit mode register setreg instruction we encounter,
      // as we assume it has been inserted by a higher authority (this is
      // likely to be a very rare occurrence).
      unsigned Dst = TII->getNamedOperand(MI, AMDGPU::OpName::simm16)->getImm();
      if (((Dst & AMDGPU::Hwreg::ID_MASK_) >> AMDGPU::Hwreg::ID_SHIFT_) !=
          AMDGPU::Hwreg::ID_MODE)
        continue;

      unsigned Width = ((Dst & AMDGPU::Hwreg::WIDTH_M1_MASK_) >>
                        AMDGPU::Hwreg::WIDTH_M1_SHIFT_) +
                       1;
      unsigned Offset =
          (Dst & AMDGPU::Hwreg::OFFSET_MASK_) >> AMDGPU::Hwreg::OFFSET_SHIFT_;
      unsigned Mask = ((1 << Width) - 1) << Offset;

      // If an InsertionPoint is set we will insert a setreg there.
      if (InsertionPoint) {
        insertSetreg(MBB, InsertionPoint, TII, IPChange.delta(NewInfo->Change));
        InsertionPoint = nullptr;
      }
      // If this is an immediate then we know the value being set, but if it is
      // not an immediate then we treat the modified bits of the mode register
      // as unknown.
      if (MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32 ||
          MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32_mode) {
        unsigned Val = TII->getNamedOperand(MI, AMDGPU::OpName::imm)->getImm();
        unsigned Mode = (Val << Offset) & Mask;
        Status Setreg = Status(Mask, Mode);
        // If we haven't already set the initial requirements for the block we
        // don't need to as the requirements start from this explicit setreg.
        RequirePending = false;
        NewInfo->Change = NewInfo->Change.merge(Setreg);
      } else {
        NewInfo->Change = NewInfo->Change.mergeUnknown(Mask);
      }
    } else if (!NewInfo->Change.isCompatible(InstrMode)) {
      // This instruction uses the Mode register and its requirements aren't
      // compatible with the current mode.
      if (InsertionPoint) {
        // If the required mode change cannot be included in the current
        // InsertionPoint changes, we need a setreg and start a new
        // InsertionPoint.
        if (!IPChange.delta(NewInfo->Change).isCombinable(InstrMode)) {
          if (RequirePending) {
            // This is the first insertionPoint in the block so we will defer
            // the insertion of the setreg to Phase 3 where we know whether or
            // not it is actually needed.
            NewInfo->FirstInsertionPoint = InsertionPoint;
            NewInfo->Require = NewInfo->Change;
            RequirePending = false;
          } else {
            insertSetreg(MBB, InsertionPoint, TII,
                         IPChange.delta(NewInfo->Change));
            IPChange = NewInfo->Change;
          }
          // Set the new InsertionPoint
          InsertionPoint = &MI;
        }
        NewInfo->Change = NewInfo->Change.merge(InstrMode);
      } else {
        // No InsertionPoint is currently set - this is either the first in
        // the block or we have previously seen an explicit setreg.
        InsertionPoint = &MI;
        IPChange = NewInfo->Change;
        NewInfo->Change = NewInfo->Change.merge(InstrMode);
      }
    }
  }
  if (RequirePending) {
    // If we haven't yet set the initial requirements for the block we set them
    // now.
    NewInfo->FirstInsertionPoint = InsertionPoint;
    NewInfo->Require = NewInfo->Change;
  } else if (InsertionPoint) {
    // We need to insert a setreg at the InsertionPoint
    insertSetreg(MBB, InsertionPoint, TII, IPChange.delta(NewInfo->Change));
  }
  NewInfo->Exit = NewInfo->Change;
  BlockInfo[MBB.getNumber()] = std::move(NewInfo);
}

// In Phase 2 we revisit each block and calculate the common Mode register
// value provided by all predecessor blocks. If the Exit value for the block
// is changed, then we add the successor blocks to the worklist so that the
// exit value is propagated.
void SIModeRegister::processBlockPhase2(MachineBasicBlock &MBB,
                                        const SIInstrInfo *TII) {
  bool RevisitRequired = false;
  bool ExitSet = false;
  unsigned ThisBlock = MBB.getNumber();
  if (MBB.pred_empty()) {
    // There are no predecessors, so use the default starting status.
    BlockInfo[ThisBlock]->Pred = DefaultStatus;
    ExitSet = true;
  } else {
    // Build a status that is common to all the predecessors by intersecting
    // all the predecessor exit status values.
    // Mask bits (which represent the Mode bits with a known value) can only be
    // added by explicit SETREG instructions or the initial default value -
    // the intersection process may remove Mask bits.
    // If we find a predecessor that has not yet had an exit value determined
    // (this can happen for example if a block is its own predecessor) we defer
    // use of that value as the Mask will be all zero, and we will revisit this
    // block again later (unless the only predecessor without an exit value is
    // this block).
    MachineBasicBlock::pred_iterator P = MBB.pred_begin(), E = MBB.pred_end();
    MachineBasicBlock &PB = *(*P);
    unsigned PredBlock = PB.getNumber();
    if ((ThisBlock == PredBlock) && (std::next(P) == E)) {
      BlockInfo[ThisBlock]->Pred = DefaultStatus;
      ExitSet = true;
    } else if (BlockInfo[PredBlock]->ExitSet) {
      BlockInfo[ThisBlock]->Pred = BlockInfo[PredBlock]->Exit;
      ExitSet = true;
    } else if (PredBlock != ThisBlock)
      RevisitRequired = true;

    for (P = std::next(P); P != E; P = std::next(P)) {
      MachineBasicBlock *Pred = *P;
      unsigned PredBlock = Pred->getNumber();
      if (BlockInfo[PredBlock]->ExitSet) {
        if (BlockInfo[ThisBlock]->ExitSet) {
          BlockInfo[ThisBlock]->Pred =
              BlockInfo[ThisBlock]->Pred.intersect(BlockInfo[PredBlock]->Exit);
        } else {
          BlockInfo[ThisBlock]->Pred = BlockInfo[PredBlock]->Exit;
        }
        ExitSet = true;
      } else if (PredBlock != ThisBlock)
        RevisitRequired = true;
    }
  }
  Status TmpStatus =
      BlockInfo[ThisBlock]->Pred.merge(BlockInfo[ThisBlock]->Change);
  if (BlockInfo[ThisBlock]->Exit != TmpStatus) {
    BlockInfo[ThisBlock]->Exit = TmpStatus;
    // Add the successors to the work list so we can propagate the changed exit
    // status.
    for (MachineBasicBlock *Succ : MBB.successors())
      Phase2List.push(Succ);
  }
  BlockInfo[ThisBlock]->ExitSet = ExitSet;
  if (RevisitRequired)
    Phase2List.push(&MBB);
}

// In Phase 3 we revisit each block and if it has an insertion point defined we
// check whether the predecessor mode meets the block's entry requirements. If
// not we insert an appropriate setreg instruction to modify the Mode register.
void SIModeRegister::processBlockPhase3(MachineBasicBlock &MBB,
                                        const SIInstrInfo *TII) {
  unsigned ThisBlock = MBB.getNumber();
  if (!BlockInfo[ThisBlock]->Pred.isCompatible(BlockInfo[ThisBlock]->Require)) {
    Status Delta =
        BlockInfo[ThisBlock]->Pred.delta(BlockInfo[ThisBlock]->Require);
    if (BlockInfo[ThisBlock]->FirstInsertionPoint)
      insertSetreg(MBB, BlockInfo[ThisBlock]->FirstInsertionPoint, TII, Delta);
    else
      insertSetreg(MBB, &MBB.instr_front(), TII, Delta);
  }
}

bool SIModeRegister::runOnMachineFunction(MachineFunction &MF) {
  BlockInfo.resize(MF.getNumBlockIDs());
  const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
  const SIInstrInfo *TII = ST.getInstrInfo();

  // Processing is performed in a number of phases

  // Phase 1 - determine the initial mode required by each block, and add setreg
  // instructions for intra block requirements.
  for (MachineBasicBlock &BB : MF)
    processBlockPhase1(BB, TII);

  // Phase 2 - determine the exit mode from each block. We add all blocks to the
  // list here, but will also add any that need to be revisited during Phase 2
  // processing.
  for (MachineBasicBlock &BB : MF)
    Phase2List.push(&BB);
  while (!Phase2List.empty()) {
    processBlockPhase2(*Phase2List.front(), TII);
    Phase2List.pop();
  }

  // Phase 3 - add an initial setreg to each block where the required entry mode
  // is not satisfied by the exit mode of all its predecessors.
  for (MachineBasicBlock &BB : MF)
    processBlockPhase3(BB, TII);

  BlockInfo.clear();

  return Changed;
}