summaryrefslogtreecommitdiffstats
path: root/man/man2/perf_event_open.2
blob: 37272edc3bd2c20ff30b0a580c09d4fa533c2394 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
.\" Copyright (c) 2012, Vincent Weaver
.\"
.\" SPDX-License-Identifier: GPL-2.0-or-later
.\"
.\" This document is based on the perf_event.h header file, the
.\" tools/perf/design.txt file, and a lot of bitter experience.
.\"
.TH perf_event_open 2 (date) "Linux man-pages (unreleased)"
.SH NAME
perf_event_open \- set up performance monitoring
.SH LIBRARY
Standard C library
.RI ( libc ", " \-lc )
.SH SYNOPSIS
.nf
.BR "#include <linux/perf_event.h>" "    /* Definition of " PERF_* " constants */"
.BR "#include <linux/hw_breakpoint.h>" " /* Definition of " HW_* " constants */"
.BR "#include <sys/syscall.h>" "         /* Definition of " SYS_* " constants */"
.B #include <unistd.h>
.P
.BI "int syscall(SYS_perf_event_open, struct perf_event_attr *" attr ,
.BI "            pid_t " pid ", int " cpu ", int " group_fd \
", unsigned long " flags  );
.fi
.P
.IR Note :
glibc provides no wrapper for
.BR perf_event_open (),
necessitating the use of
.BR syscall (2).
.SH DESCRIPTION
Given a list of parameters,
.BR perf_event_open ()
returns a file descriptor, for use in subsequent system calls
(\c
.BR read (2),
.BR mmap (2),
.BR prctl (2),
.BR fcntl (2),
etc.).
.PP
A call to
.BR perf_event_open ()
creates a file descriptor that allows measuring performance
information.
Each file descriptor corresponds to one
event that is measured; these can be grouped together
to measure multiple events simultaneously.
.P
Events can be enabled and disabled in two ways: via
.BR ioctl (2)
and via
.BR prctl (2).
When an event is disabled it does not count or generate overflows but does
continue to exist and maintain its count value.
.P
Events come in two flavors: counting and sampled.
A
.I counting
event is one that is used for counting the aggregate number of events
that occur.
In general, counting event results are gathered with a
.BR read (2)
call.
A
.I sampling
event periodically writes measurements to a buffer that can then
be accessed via
.BR mmap (2).
.SS Arguments
The
.I pid
and
.I cpu
arguments allow specifying which process and CPU to monitor:
.TP
.BR "pid == 0" " and " "cpu == \-1"
This measures the calling process/thread on any CPU.
.TP
.BR "pid == 0" " and " "cpu >= 0"
This measures the calling process/thread only
when running on the specified CPU.
.TP
.BR "pid > 0" " and " "cpu == \-1"
This measures the specified process/thread on any CPU.
.TP
.BR "pid > 0" " and " "cpu >= 0"
This measures the specified process/thread only
when running on the specified CPU.
.TP
.BR "pid == \-1" " and " "cpu >= 0"
This measures all processes/threads on the specified CPU.
This requires
.B CAP_PERFMON
(since Linux 5.8) or
.B CAP_SYS_ADMIN
capability or a
.I /proc/sys/kernel/perf_event_paranoid
value of less than 1.
.TP
.BR "pid == \-1" " and " "cpu == \-1"
This setting is invalid and will return an error.
.P
When
.I pid
is greater than zero, permission to perform this system call
is governed by
.B CAP_PERFMON
(since Linux 5.9) and a ptrace access mode
.B PTRACE_MODE_READ_REALCREDS
check on older Linux versions; see
.BR ptrace (2).
.P
The
.I group_fd
argument allows event groups to be created.
An event group has one event which is the group leader.
The leader is created first, with
.IR group_fd " = \-1."
The rest of the group members are created with subsequent
.BR perf_event_open ()
calls with
.I group_fd
being set to the file descriptor of the group leader.
(A single event on its own is created with
.IR group_fd " = \-1"
and is considered to be a group with only 1 member.)
An event group is scheduled onto the CPU as a unit:
it will be put onto the CPU
only if all of the events in the group can be put onto the CPU.
This means that the values of the member events can be meaningfully compared
\[em]added, divided (to get ratios), and so on\[em]
with each other,
since they have counted events for the same set of executed instructions.
.P
The
.I flags
argument is formed by ORing together zero or more of the following values:
.TP
.BR PERF_FLAG_FD_CLOEXEC " (since Linux 3.14)"
.\" commit a21b0b354d4ac39be691f51c53562e2c24443d9e
This flag enables the close-on-exec flag for the created
event file descriptor,
so that the file descriptor is automatically closed on
.BR execve (2).
Setting the close-on-exec flags at creation time, rather than later with
.BR fcntl (2),
avoids potential race conditions where the calling thread invokes
.BR perf_event_open ()
and
.BR fcntl (2)
at the same time as another thread calls
.BR fork (2)
then
.BR execve (2).
.TP
.B PERF_FLAG_FD_NO_GROUP
This flag tells the event to ignore the
.I group_fd
parameter except for the purpose of setting up output redirection
using the
.B PERF_FLAG_FD_OUTPUT
flag.
.TP
.BR PERF_FLAG_FD_OUTPUT " (broken since Linux 2.6.35)"
.\" commit ac9721f3f54b27a16c7e1afb2481e7ee95a70318
This flag re-routes the event's sampled output to instead
be included in the mmap buffer of the event specified by
.IR group_fd .
.TP
.BR PERF_FLAG_PID_CGROUP " (since Linux 2.6.39)"
.\" commit e5d1367f17ba6a6fed5fd8b74e4d5720923e0c25
This flag activates per-container system-wide monitoring.
A container
is an abstraction that isolates a set of resources for finer-grained
control (CPUs, memory, etc.).
In this mode, the event is measured
only if the thread running on the monitored CPU belongs to the designated
container (cgroup).
The cgroup is identified by passing a file descriptor
opened on its directory in the cgroupfs filesystem.
For instance, if the
cgroup to monitor is called
.IR test ,
then a file descriptor opened on
.I /dev/cgroup/test
(assuming cgroupfs is mounted on
.IR /dev/cgroup )
must be passed as the
.I pid
parameter.
cgroup monitoring is available only
for system-wide events and may therefore require extra permissions.
.P
The
.I perf_event_attr
structure provides detailed configuration information
for the event being created.
.P
.in +4n
.EX
struct perf_event_attr {
    __u32 type;                 /* Type of event */
    __u32 size;                 /* Size of attribute structure */
    __u64 config;               /* Type\-specific configuration */
\&
    union {
        __u64 sample_period;    /* Period of sampling */
        __u64 sample_freq;      /* Frequency of sampling */
    };
\&
    __u64 sample_type;  /* Specifies values included in sample */
    __u64 read_format;  /* Specifies values returned in read */
\&
    __u64 disabled       : 1,   /* off by default */
          inherit        : 1,   /* children inherit it */
          pinned         : 1,   /* must always be on PMU */
          exclusive      : 1,   /* only group on PMU */
          exclude_user   : 1,   /* don\[aq]t count user */
          exclude_kernel : 1,   /* don\[aq]t count kernel */
          exclude_hv     : 1,   /* don\[aq]t count hypervisor */
          exclude_idle   : 1,   /* don\[aq]t count when idle */
          mmap           : 1,   /* include mmap data */
          comm           : 1,   /* include comm data */
          freq           : 1,   /* use freq, not period */
          inherit_stat   : 1,   /* per task counts */
          enable_on_exec : 1,   /* next exec enables */
          task           : 1,   /* trace fork/exit */
          watermark      : 1,   /* wakeup_watermark */
          precise_ip     : 2,   /* skid constraint */
          mmap_data      : 1,   /* non\-exec mmap data */
          sample_id_all  : 1,   /* sample_type all events */
          exclude_host   : 1,   /* don\[aq]t count in host */
          exclude_guest  : 1,   /* don\[aq]t count in guest */
          exclude_callchain_kernel : 1,
                                /* exclude kernel callchains */
          exclude_callchain_user   : 1,
                                /* exclude user callchains */
          mmap2          :  1,  /* include mmap with inode data */
          comm_exec      :  1,  /* flag comm events that are
                                   due to exec */
          use_clockid    :  1,  /* use clockid for time fields */
          context_switch :  1,  /* context switch data */
          write_backward :  1,  /* Write ring buffer from end
                                   to beginning */
          namespaces     :  1,  /* include namespaces data */
          ksymbol        :  1,  /* include ksymbol events */
          bpf_event      :  1,  /* include bpf events */
          aux_output     :  1,  /* generate AUX records
                                   instead of events */
          cgroup         :  1,  /* include cgroup events */
          text_poke      :  1,  /* include text poke events */
          build_id       :  1,  /* use build id in mmap2 events */
          inherit_thread :  1,  /* children only inherit */
                                /* if cloned with CLONE_THREAD */
          remove_on_exec :  1,  /* event is removed from task
                                   on exec */
          sigtrap        :  1,  /* send synchronous SIGTRAP
                                   on event */
\&
          __reserved_1   : 26;
\&
    union {
        __u32 wakeup_events;    /* wakeup every n events */
        __u32 wakeup_watermark; /* bytes before wakeup */
    };
\&
    __u32     bp_type;          /* breakpoint type */
\&
    union {
        __u64 bp_addr;          /* breakpoint address */
        __u64 kprobe_func;      /* for perf_kprobe */
        __u64 uprobe_path;      /* for perf_uprobe */
        __u64 config1;          /* extension of config */
    };
\&
    union {
        __u64 bp_len;           /* breakpoint length */
        __u64 kprobe_addr;      /* with kprobe_func == NULL */
        __u64 probe_offset;     /* for perf_[k,u]probe */
        __u64 config2;          /* extension of config1 */
    };
    __u64 branch_sample_type;   /* enum perf_branch_sample_type */
    __u64 sample_regs_user;     /* user regs to dump on samples */
    __u32 sample_stack_user;    /* size of stack to dump on
                                   samples */
    __s32 clockid;              /* clock to use for time fields */
    __u64 sample_regs_intr;     /* regs to dump on samples */
    __u32 aux_watermark;        /* aux bytes before wakeup */
    __u16 sample_max_stack;     /* max frames in callchain */
    __u16 __reserved_2;         /* align to u64 */
    __u32 aux_sample_size;      /* max aux sample size */
    __u32 __reserved_3;         /* align to u64 */
    __u64 sig_data;             /* user data for sigtrap */
\&
};
.EE
.in
.P
The fields of the
.I perf_event_attr
structure are described in more detail below:
.TP
.I type
This field specifies the overall event type.
It has one of the following values:
.RS
.TP
.B PERF_TYPE_HARDWARE
This indicates one of the "generalized" hardware events provided
by the kernel.
See the
.I config
field definition for more details.
.TP
.B PERF_TYPE_SOFTWARE
This indicates one of the software-defined events provided by the kernel
(even if no hardware support is available).
.TP
.B PERF_TYPE_TRACEPOINT
This indicates a tracepoint
provided by the kernel tracepoint infrastructure.
.TP
.B PERF_TYPE_HW_CACHE
This indicates a hardware cache event.
This has a special encoding, described in the
.I config
field definition.
.TP
.B PERF_TYPE_RAW
This indicates a "raw" implementation-specific event in the
.IR config " field."
.TP
.BR PERF_TYPE_BREAKPOINT " (since Linux 2.6.33)"
.\" commit 24f1e32c60c45c89a997c73395b69c8af6f0a84e
This indicates a hardware breakpoint as provided by the CPU.
Breakpoints can be read/write accesses to an address as well as
execution of an instruction address.
.TP
dynamic PMU
Since Linux 2.6.38,
.\" commit 2e80a82a49c4c7eca4e35734380f28298ba5db19
.BR perf_event_open ()
can support multiple PMUs.
To enable this, a value exported by the kernel can be used in the
.I type
field to indicate which PMU to use.
The value to use can be found in the sysfs filesystem:
there is a subdirectory per PMU instance under
.IR /sys/bus/event_source/devices .
In each subdirectory there is a
.I type
file whose content is an integer that can be used in the
.I type
field.
For instance,
.I /sys/bus/event_source/devices/cpu/type
contains the value for the core CPU PMU, which is usually 4.
.TP
.BR kprobe " and " uprobe " (since Linux 4.17)"
.\" commit 65074d43fc77bcae32776724b7fa2696923c78e4
.\" commit e12f03d7031a977356e3d7b75a68c2185ff8d155
.\" commit 33ea4b24277b06dbc55d7f5772a46f029600255e
These two dynamic PMUs create a kprobe/uprobe and attach it to the
file descriptor generated by perf_event_open.
The kprobe/uprobe will be destroyed on the destruction of the file descriptor.
See fields
.IR kprobe_func ,
.IR uprobe_path ,
.IR kprobe_addr ,
and
.I probe_offset
for more details.
.RE
.TP
.I "size"
The size of the
.I perf_event_attr
structure for forward/backward compatibility.
Set this using
.I sizeof(struct perf_event_attr)
to allow the kernel to see
the struct size at the time of compilation.
.IP
The related define
.B PERF_ATTR_SIZE_VER0
is set to 64; this was the size of the first published struct.
.B PERF_ATTR_SIZE_VER1
is 72, corresponding to the addition of breakpoints in Linux 2.6.33.
.\" commit cb5d76999029ae7a517cb07dfa732c1b5a934fc2
.\" this was added much later when PERF_ATTR_SIZE_VER2 happened
.\" but the actual attr_size had increased in Linux 2.6.33
.B PERF_ATTR_SIZE_VER2
is 80 corresponding to the addition of branch sampling in Linux 3.4.
.\" commit cb5d76999029ae7a517cb07dfa732c1b5a934fc2
.B PERF_ATTR_SIZE_VER3
is 96 corresponding to the addition
of
.I sample_regs_user
and
.I sample_stack_user
in Linux 3.7.
.\" commit 1659d129ed014b715b0b2120e6fd929bdd33ed03
.B PERF_ATTR_SIZE_VER4
is 104 corresponding to the addition of
.I sample_regs_intr
in Linux 3.19.
.\" commit 60e2364e60e86e81bc6377f49779779e6120977f
.B PERF_ATTR_SIZE_VER5
is 112 corresponding to the addition of
.I aux_watermark
in Linux 4.1.
.\" commit 1a5941312414c71dece6717da9a0fa1303127afa
.TP
.I "config"
This specifies which event you want, in conjunction with
the
.I type
field.
The
.I config1
and
.I config2
fields are also taken into account in cases where 64 bits is not
enough to fully specify the event.
The encoding of these fields are event dependent.
.IP
There are various ways to set the
.I config
field that are dependent on the value of the previously
described
.I type
field.
What follows are various possible settings for
.I config
separated out by
.IR type .
.IP
If
.I type
is
.BR PERF_TYPE_HARDWARE ,
we are measuring one of the generalized hardware CPU events.
Not all of these are available on all platforms.
Set
.I config
to one of the following:
.RS 12
.TP
.B PERF_COUNT_HW_CPU_CYCLES
Total cycles.
Be wary of what happens during CPU frequency scaling.
.TP
.B PERF_COUNT_HW_INSTRUCTIONS
Retired instructions.
Be careful, these can be affected by various
issues, most notably hardware interrupt counts.
.TP
.B PERF_COUNT_HW_CACHE_REFERENCES
Cache accesses.
Usually this indicates Last Level Cache accesses but this may
vary depending on your CPU.
This may include prefetches and coherency messages; again this
depends on the design of your CPU.
.TP
.B PERF_COUNT_HW_CACHE_MISSES
Cache misses.
Usually this indicates Last Level Cache misses; this is intended to be
used in conjunction with the
.B PERF_COUNT_HW_CACHE_REFERENCES
event to calculate cache miss rates.
.TP
.B PERF_COUNT_HW_BRANCH_INSTRUCTIONS
Retired branch instructions.
Prior to Linux 2.6.35, this used
the wrong event on AMD processors.
.\" commit f287d332ce835f77a4f5077d2c0ef1e3f9ea42d2
.TP
.B PERF_COUNT_HW_BRANCH_MISSES
Mispredicted branch instructions.
.TP
.B PERF_COUNT_HW_BUS_CYCLES
Bus cycles, which can be different from total cycles.
.TP
.BR PERF_COUNT_HW_STALLED_CYCLES_FRONTEND " (since Linux 3.0)"
.\" commit 8f62242246351b5a4bc0c1f00c0c7003edea128a
Stalled cycles during issue.
.TP
.BR PERF_COUNT_HW_STALLED_CYCLES_BACKEND  " (since Linux 3.0)"
.\" commit 8f62242246351b5a4bc0c1f00c0c7003edea128a
Stalled cycles during retirement.
.TP
.BR PERF_COUNT_HW_REF_CPU_CYCLES  " (since Linux 3.3)"
.\" commit c37e17497e01fc0f5d2d6feb5723b210b3ab8890
Total cycles; not affected by CPU frequency scaling.
.RE
.IP
If
.I type
is
.BR PERF_TYPE_SOFTWARE ,
we are measuring software events provided by the kernel.
Set
.I config
to one of the following:
.RS 12
.TP
.B PERF_COUNT_SW_CPU_CLOCK
This reports the CPU clock, a high-resolution per-CPU timer.
.TP
.B PERF_COUNT_SW_TASK_CLOCK
This reports a clock count specific to the task that is running.
.TP
.B PERF_COUNT_SW_PAGE_FAULTS
This reports the number of page faults.
.TP
.B PERF_COUNT_SW_CONTEXT_SWITCHES
This counts context switches.
Until Linux 2.6.34, these were all reported as user-space
events, after that they are reported as happening in the kernel.
.\" commit e49a5bd38159dfb1928fd25b173bc9de4bbadb21
.TP
.B PERF_COUNT_SW_CPU_MIGRATIONS
This reports the number of times the process
has migrated to a new CPU.
.TP
.B PERF_COUNT_SW_PAGE_FAULTS_MIN
This counts the number of minor page faults.
These did not require disk I/O to handle.
.TP
.B PERF_COUNT_SW_PAGE_FAULTS_MAJ
This counts the number of major page faults.
These required disk I/O to handle.
.TP
.BR PERF_COUNT_SW_ALIGNMENT_FAULTS " (since Linux 2.6.33)"
.\" commit f7d7986060b2890fc26db6ab5203efbd33aa2497
This counts the number of alignment faults.
These happen when unaligned memory accesses happen; the kernel
can handle these but it reduces performance.
This happens only on some architectures (never on x86).
.TP
.BR PERF_COUNT_SW_EMULATION_FAULTS " (since Linux 2.6.33)"
.\" commit f7d7986060b2890fc26db6ab5203efbd33aa2497
This counts the number of emulation faults.
The kernel sometimes traps on unimplemented instructions
and emulates them for user space.
This can negatively impact performance.
.TP
.BR PERF_COUNT_SW_DUMMY " (since Linux 3.12)"
.\" commit fa0097ee690693006ab1aea6c01ad3c851b65c77
This is a placeholder event that counts nothing.
Informational sample record types such as mmap or comm
must be associated with an active event.
This dummy event allows gathering such records without requiring
a counting event.
.TP
.BR PERF_COUNT_SW_BPF_OUTPUT " (since Linux 4.4)"
.\" commit a43eec304259a6c637f4014a6d4767159b6a3aa3
This is used to generate raw sample data from BPF.
BPF programs can write to this event using
.B bpf_perf_event_output
helper.
.TP
.BR PERF_COUNT_SW_CGROUP_SWITCHES " (since Linux 5.13)"
.\" commit d0d1dd628527c77db2391ce0293c1ed344b2365f
This counts context switches to a task in a different cgroup.
In other words, if the next task is in the same cgroup,
it won't count the switch.
.RE
.P
.RS
If
.I type
is
.BR PERF_TYPE_TRACEPOINT ,
then we are measuring kernel tracepoints.
The value to use in
.I config
can be obtained from under debugfs
.I tracing/events/*/*/id
if ftrace is enabled in the kernel.
.RE
.P
.RS
If
.I type
is
.BR PERF_TYPE_HW_CACHE ,
then we are measuring a hardware CPU cache event.
To calculate the appropriate
.I config
value, use the following equation:
.RS 4
.P
.in +4n
.EX
config = (perf_hw_cache_id) |
         (perf_hw_cache_op_id << 8) |
         (perf_hw_cache_op_result_id << 16);
.EE
.in
.P
where
.I perf_hw_cache_id
is one of:
.RS 4
.TP
.B PERF_COUNT_HW_CACHE_L1D
for measuring Level 1 Data Cache
.TP
.B PERF_COUNT_HW_CACHE_L1I
for measuring Level 1 Instruction Cache
.TP
.B PERF_COUNT_HW_CACHE_LL
for measuring Last-Level Cache
.TP
.B PERF_COUNT_HW_CACHE_DTLB
for measuring the Data TLB
.TP
.B PERF_COUNT_HW_CACHE_ITLB
for measuring the Instruction TLB
.TP
.B PERF_COUNT_HW_CACHE_BPU
for measuring the branch prediction unit
.TP
.BR PERF_COUNT_HW_CACHE_NODE " (since Linux 3.1)"
.\" commit 89d6c0b5bdbb1927775584dcf532d98b3efe1477
for measuring local memory accesses
.RE
.P
and
.I perf_hw_cache_op_id
is one of:
.RS 4
.TP
.B PERF_COUNT_HW_CACHE_OP_READ
for read accesses
.TP
.B PERF_COUNT_HW_CACHE_OP_WRITE
for write accesses
.TP
.B PERF_COUNT_HW_CACHE_OP_PREFETCH
for prefetch accesses
.RE
.P
and
.I perf_hw_cache_op_result_id
is one of:
.RS 4
.TP
.B PERF_COUNT_HW_CACHE_RESULT_ACCESS
to measure accesses
.TP
.B PERF_COUNT_HW_CACHE_RESULT_MISS
to measure misses
.RE
.RE
.P
If
.I type
is
.BR PERF_TYPE_RAW ,
then a custom "raw"
.I config
value is needed.
Most CPUs support events that are not covered by the "generalized" events.
These are implementation defined; see your CPU manual (for example
the Intel Volume 3B documentation or the AMD BIOS and Kernel Developer
Guide).
The libpfm4 library can be used to translate from the name in the
architectural manuals to the raw hex value
.BR perf_event_open ()
expects in this field.
.P
If
.I type
is
.BR PERF_TYPE_BREAKPOINT ,
then leave
.I config
set to zero.
Its parameters are set in other places.
.P
If
.I type
is
.B kprobe
or
.BR uprobe ,
set
.I retprobe
(bit 0 of
.IR config ,
see
.IR /sys/bus/event_source/devices/[k,u]probe/format/retprobe )
for kretprobe/uretprobe.
See fields
.IR kprobe_func ,
.IR uprobe_path ,
.IR kprobe_addr ,
and
.I probe_offset
for more details.
.RE
.TP
.I kprobe_func
.TQ
.I uprobe_path
.TQ
.I kprobe_addr
.TQ
.I probe_offset
These fields describe the kprobe/uprobe for dynamic PMUs
.B kprobe
and
.BR uprobe .
For
.BR kprobe :
use
.I kprobe_func
and
.IR probe_offset ,
or use
.I kprobe_addr
and leave
.I kprobe_func
as NULL.
For
.BR uprobe :
use
.I uprobe_path
and
.IR probe_offset .
.TP
.I sample_period
.TQ
.I sample_freq
A "sampling" event is one that generates an overflow notification
every N events, where N is given by
.IR sample_period .
A sampling event has
.IR sample_period " > 0."
When an overflow occurs, requested data is recorded
in the mmap buffer.
The
.I sample_type
field controls what data is recorded on each overflow.
.IP
.I sample_freq
can be used if you wish to use frequency rather than period.
In this case, you set the
.I freq
flag.
The kernel will adjust the sampling period
to try and achieve the desired rate.
The rate of adjustment is a
timer tick.
.TP
.I sample_type
The various bits in this field specify which values to include
in the sample.
They will be recorded in a ring-buffer,
which is available to user space using
.BR mmap (2).
The order in which the values are saved in the
sample are documented in the MMAP Layout subsection below;
it is not the
.I "enum perf_event_sample_format"
order.
.RS
.TP
.B PERF_SAMPLE_IP
Records instruction pointer.
.TP
.B PERF_SAMPLE_TID
Records the process and thread IDs.
.TP
.B PERF_SAMPLE_TIME
Records a timestamp.
.TP
.B PERF_SAMPLE_ADDR
Records an address, if applicable.
.TP
.B PERF_SAMPLE_READ
Record counter values for all events in a group, not just the group leader.
.TP
.B PERF_SAMPLE_CALLCHAIN
Records the callchain (stack backtrace).
.TP
.B PERF_SAMPLE_ID
Records a unique ID for the opened event's group leader.
.TP
.B PERF_SAMPLE_CPU
Records CPU number.
.TP
.B PERF_SAMPLE_PERIOD
Records the current sampling period.
.TP
.B PERF_SAMPLE_STREAM_ID
Records a unique ID for the opened event.
Unlike
.B PERF_SAMPLE_ID
the actual ID is returned, not the group leader.
This ID is the same as the one returned by
.BR PERF_FORMAT_ID .
.TP
.B PERF_SAMPLE_RAW
Records additional data, if applicable.
Usually returned by tracepoint events.
.TP
.BR PERF_SAMPLE_BRANCH_STACK " (since Linux 3.4)"
.\" commit bce38cd53e5ddba9cb6d708c4ef3d04a4016ec7e
This provides a record of recent branches, as provided
by CPU branch sampling hardware (such as Intel Last Branch Record).
Not all hardware supports this feature.
.IP
See the
.I branch_sample_type
field for how to filter which branches are reported.
.TP
.BR PERF_SAMPLE_REGS_USER " (since Linux 3.7)"
.\" commit 4018994f3d8785275ef0e7391b75c3462c029e56
Records the current user-level CPU register state
(the values in the process before the kernel was called).
.TP
.BR PERF_SAMPLE_STACK_USER " (since Linux 3.7)"
.\" commit c5ebcedb566ef17bda7b02686e0d658a7bb42ee7
Records the user level stack, allowing stack unwinding.
.TP
.BR PERF_SAMPLE_WEIGHT " (since Linux 3.10)"
.\" commit c3feedf2aaf9ac8bad6f19f5d21e4ee0b4b87e9c
Records a hardware provided weight value that expresses how
costly the sampled event was.
This allows the hardware to highlight expensive events in
a profile.
.TP
.BR PERF_SAMPLE_DATA_SRC " (since Linux 3.10)"
.\" commit d6be9ad6c960f43800a6f118932bc8a5a4eadcd1
Records the data source: where in the memory hierarchy
the data associated with the sampled instruction came from.
This is available only if the underlying hardware
supports this feature.
.TP
.BR PERF_SAMPLE_IDENTIFIER " (since Linux 3.12)"
.\" commit ff3d527cebc1fa3707c617bfe9e74f53fcfb0955
Places the
.B SAMPLE_ID
value in a fixed position in the record,
either at the beginning (for sample events) or at the end
(if a non-sample event).
.IP
This was necessary because a sample stream may have
records from various different event sources with different
.I sample_type
settings.
Parsing the event stream properly was not possible because the
format of the record was needed to find
.BR SAMPLE_ID ,
but
the format could not be found without knowing what
event the sample belonged to (causing a circular
dependency).
.IP
The
.B PERF_SAMPLE_IDENTIFIER
setting makes the event stream always parsable
by putting
.B SAMPLE_ID
in a fixed location, even though
it means having duplicate
.B SAMPLE_ID
values in records.
.TP
.BR PERF_SAMPLE_TRANSACTION " (since Linux 3.13)"
.\" commit fdfbbd07e91f8fe387140776f3fd94605f0c89e5
Records reasons for transactional memory abort events
(for example, from Intel TSX transactional memory support).
.IP
The
.I precise_ip
setting must be greater than 0 and a transactional memory abort
event must be measured or no values will be recorded.
Also note that some perf_event measurements, such as sampled
cycle counting, may cause extraneous aborts (by causing an
interrupt during a transaction).
.TP
.BR PERF_SAMPLE_REGS_INTR " (since Linux 3.19)"
.\" commit 60e2364e60e86e81bc6377f49779779e6120977f
Records a subset of the current CPU register state
as specified by
.IR sample_regs_intr .
Unlike
.B PERF_SAMPLE_REGS_USER
the register values will return kernel register
state if the overflow happened while kernel
code is running.
If the CPU supports hardware sampling of
register state (i.e., PEBS on Intel x86) and
.I precise_ip
is set higher than zero then the register
values returned are those captured by
hardware at the time of the sampled
instruction's retirement.
.TP
.BR PERF_SAMPLE_PHYS_ADDR " (since Linux 4.13)"
.\" commit fc7ce9c74c3ad232b084d80148654f926d01ece7
Records physical address of data like in
.BR PERF_SAMPLE_ADDR .
.TP
.BR PERF_SAMPLE_CGROUP " (since Linux 5.7)"
.\" commit 96aaab686505c449e24d76e76507290dcc30e008
Records (perf_event) cgroup ID of the process.
This corresponds to the
.I id
field in the
.B PERF_RECORD_CGROUP
event.
.TP
.BR PERF_SAMPLE_DATA_PAGE_SIZE " (since Linux 5.11)"
.\" commit 8d97e71811aaafe4abf611dc24822fd6e73df1a1
Records page size of data like in
.BR PERF_SAMPLE_ADDR .
.TP
.BR PERF_SAMPLE_CODE_PAGE_SIZE " (since Linux 5.11)"
.\" commit 995f088efebe1eba0282a6ffa12411b37f8990c2
Records page size of ip like in
.BR PERF_SAMPLE_IP .
.TP
.BR PERF_SAMPLE_WEIGHT_STRUCT " (since Linux 5.12)"
.\" commit 2a6c6b7d7ad346f0679d0963cb19b3f0ea7ef32c
Records hardware provided weight values like in
.BR PERF_SAMPLE_WEIGHT ,
but it can represent multiple values in a struct.
This shares the same space as
.BR PERF_SAMPLE_WEIGHT ,
so users can apply either of those,
not both.
It has the following format and
the meaning of each field is
dependent on the hardware implementation.
.P
.in +4n
.EX
union perf_sample_weight {
    u64  full;           /* PERF_SAMPLE_WEIGHT */
    struct {             /* PERF_SAMPLE_WEIGHT_STRUCT */
        u32  var1_dw;
        u16  var2_w;
        u16  var3_w;
    };
};
.EE
.in
.RE
.TP
.I read_format
This field specifies the format of the data returned by
.BR read (2)
on a
.BR perf_event_open ()
file descriptor.
.RS
.TP
.B PERF_FORMAT_TOTAL_TIME_ENABLED
Adds the 64-bit
.I time_enabled
field.
This can be used to calculate estimated totals if
the PMU is overcommitted and multiplexing is happening.
.TP
.B PERF_FORMAT_TOTAL_TIME_RUNNING
Adds the 64-bit
.I time_running
field.
This can be used to calculate estimated totals if
the PMU is overcommitted and multiplexing is happening.
.TP
.B PERF_FORMAT_ID
Adds a 64-bit unique value that corresponds to the event group.
.TP
.B PERF_FORMAT_GROUP
Allows all counter values in an event group to be read with one read.
.TP
.B PERF_FORMAT_LOST " (since Linux 6.0)"
.\" commit 119a784c81270eb88e573174ed2209225d646656
Adds a 64-bit value that is the number of lost samples for this event.
This would be only meaningful when
.I sample_period
or
.I sample_freq
is set.
.RE
.TP
.I disabled
The
.I disabled
bit specifies whether the counter starts out disabled or enabled.
If disabled, the event can later be enabled by
.BR ioctl (2),
.BR prctl (2),
or
.IR enable_on_exec .
.IP
When creating an event group, typically the group leader is initialized
with
.I disabled
set to 1 and any child events are initialized with
.I disabled
set to 0.
Despite
.I disabled
being 0, the child events will not start until the group leader
is enabled.
.TP
.I inherit
The
.I inherit
bit specifies that this counter should count events of child
tasks as well as the task specified.
This applies only to new children, not to any existing children at
the time the counter is created (nor to any new children of
existing children).
.IP
Inherit does not work for some combinations of
.I read_format
values, such as
.BR PERF_FORMAT_GROUP .
.TP
.I pinned
The
.I pinned
bit specifies that the counter should always be on the CPU if at all
possible.
It applies only to hardware counters and only to group leaders.
If a pinned counter cannot be put onto the CPU (e.g., because there are
not enough hardware counters or because of a conflict with some other
event), then the counter goes into an 'error' state, where reads
return end-of-file (i.e.,
.BR read (2)
returns 0) until the counter is subsequently enabled or disabled.
.TP
.I exclusive
The
.I exclusive
bit specifies that when this counter's group is on the CPU,
it should be the only group using the CPU's counters.
In the future this may allow monitoring programs to
support PMU features that need to run alone so that they do not
disrupt other hardware counters.
.IP
Note that many unexpected situations may prevent events with the
.I exclusive
bit set from ever running.
This includes any users running a system-wide
measurement as well as any kernel use of the performance counters
(including the commonly enabled NMI Watchdog Timer interface).
.TP
.I exclude_user
If this bit is set, the count excludes events that happen in user space.
.TP
.I exclude_kernel
If this bit is set, the count excludes events that happen in kernel space.
.TP
.I exclude_hv
If this bit is set, the count excludes events that happen in the
hypervisor.
This is mainly for PMUs that have built-in support for handling this
(such as POWER).
Extra support is needed for handling hypervisor measurements on most
machines.
.TP
.I exclude_idle
If set, don't count when the CPU is running the idle task.
While you can currently enable this for any event type, it is ignored
for all but software events.
.TP
.I mmap
The
.I mmap
bit enables generation of
.B PERF_RECORD_MMAP
samples for every
.BR mmap (2)
call that has
.B PROT_EXEC
set.
This allows tools to notice new executable code being mapped into
a program (dynamic shared libraries for example)
so that addresses can be mapped back to the original code.
.TP
.I comm
The
.I comm
bit enables tracking of process command name as modified by the
.BR execve (2)
and
.BR prctl (PR_SET_NAME)
system calls as well as writing to
.IR /proc/self/comm .
If the
.I comm_exec
flag is also successfully set (possible since Linux 3.16),
.\" commit 82b897782d10fcc4930c9d4a15b175348fdd2871
then the misc flag
.B PERF_RECORD_MISC_COMM_EXEC
can be used to differentiate the
.BR execve (2)
case from the others.
.TP
.I freq
If this bit is set, then
.I sample_frequency
not
.I sample_period
is used when setting up the sampling interval.
.TP
.I inherit_stat
This bit enables saving of event counts on context switch for
inherited tasks.
This is meaningful only if the
.I inherit
field is set.
.TP
.I enable_on_exec
If this bit is set, a counter is automatically
enabled after a call to
.BR execve (2).
.TP
.I task
If this bit is set, then
fork/exit notifications are included in the ring buffer.
.TP
.I watermark
If set, have an overflow notification happen when we cross the
.I wakeup_watermark
boundary.
Otherwise, overflow notifications happen after
.I wakeup_events
samples.
.TP
.IR precise_ip " (since Linux 2.6.35)"
.\" commit ab608344bcbde4f55ec4cd911b686b0ce3eae076
This controls the amount of skid.
Skid is how many instructions
execute between an event of interest happening and the kernel
being able to stop and record the event.
Smaller skid is
better and allows more accurate reporting of which events
correspond to which instructions, but hardware is often limited
with how small this can be.
.IP
The possible values of this field are the following:
.RS
.TP
.B 0
.B SAMPLE_IP
can have arbitrary skid.
.TP
.B 1
.B SAMPLE_IP
must have constant skid.
.TP
.B 2
.B SAMPLE_IP
requested to have 0 skid.
.TP
.B 3
.B SAMPLE_IP
must have 0 skid.
See also the description of
.BR PERF_RECORD_MISC_EXACT_IP .
.RE
.TP
.IR mmap_data " (since Linux 2.6.36)"
.\" commit 3af9e859281bda7eb7c20b51879cf43aa788ac2e
This is the counterpart of the
.I mmap
field.
This enables generation of
.B PERF_RECORD_MMAP
samples for
.BR mmap (2)
calls that do not have
.B PROT_EXEC
set (for example data and SysV shared memory).
.TP
.IR sample_id_all " (since Linux 2.6.38)"
.\" commit c980d1091810df13f21aabbce545fd98f545bbf7
If set, then TID, TIME, ID, STREAM_ID, and CPU can
additionally be included in
.RB non- PERF_RECORD_SAMPLE s
if the corresponding
.I sample_type
is selected.
.IP
If
.B PERF_SAMPLE_IDENTIFIER
is specified, then an additional ID value is included
as the last value to ease parsing the record stream.
This may lead to the
.I id
value appearing twice.
.IP
The layout is described by this pseudo-structure:
.IP
.in +4n
.EX
struct sample_id {
    { u32 pid, tid; }   /* if PERF_SAMPLE_TID set */
    { u64 time;     }   /* if PERF_SAMPLE_TIME set */
    { u64 id;       }   /* if PERF_SAMPLE_ID set */
    { u64 stream_id;}   /* if PERF_SAMPLE_STREAM_ID set  */
    { u32 cpu, res; }   /* if PERF_SAMPLE_CPU set */
    { u64 id;       }   /* if PERF_SAMPLE_IDENTIFIER set */
};
.EE
.in
.TP
.IR exclude_host " (since Linux 3.2)"
.\" commit a240f76165e6255384d4bdb8139895fac7988799
When conducting measurements that include processes running
VM instances (i.e., have executed a
.B KVM_RUN
.BR ioctl (2)),
only measure events happening inside a guest instance.
This is only meaningful outside the guests; this setting does
not change counts gathered inside of a guest.
Currently, this functionality is x86 only.
.TP
.IR exclude_guest " (since Linux 3.2)"
.\" commit a240f76165e6255384d4bdb8139895fac7988799
When conducting measurements that include processes running
VM instances (i.e., have executed a
.B KVM_RUN
.BR ioctl (2)),
do not measure events happening inside guest instances.
This is only meaningful outside the guests; this setting does
not change counts gathered inside of a guest.
Currently, this functionality is x86 only.
.TP
.IR exclude_callchain_kernel " (since Linux 3.7)"
.\" commit d077526485d5c9b12fe85d0b2b3b7041e6bc5f91
Do not include kernel callchains.
.TP
.IR exclude_callchain_user " (since Linux 3.7)"
.\" commit d077526485d5c9b12fe85d0b2b3b7041e6bc5f91
Do not include user callchains.
.TP
.IR mmap2 " (since Linux 3.16)"
.\" commit 13d7a2410fa637f450a29ecb515ac318ee40c741
.\" This is tricky; was committed during 3.12 development
.\" but right before release was disabled.
.\" So while you could select mmap2 starting with Linux 3.12
.\" it did not work until Linux 3.16
.\" commit a5a5ba72843dd05f991184d6cb9a4471acce1005
Generate an extended executable mmap record that contains enough
additional information to uniquely identify shared mappings.
The
.I mmap
flag must also be set for this to work.
.TP
.IR comm_exec " (since Linux 3.16)"
.\" commit 82b897782d10fcc4930c9d4a15b175348fdd2871
This is purely a feature-detection flag, it does not change
kernel behavior.
If this flag can successfully be set, then, when
.I comm
is enabled, the
.B PERF_RECORD_MISC_COMM_EXEC
flag will be set in the
.I misc
field of a comm record header if the rename event being
reported was caused by a call to
.BR execve (2).
This allows tools to distinguish between the various
types of process renaming.
.TP
.IR use_clockid " (since Linux 4.1)"
.\" commit 34f439278cef7b1177f8ce24f9fc81dfc6221d3b
This allows selecting which internal Linux clock to use
when generating timestamps via the
.I clockid
field.
This can make it easier to correlate perf sample times with
timestamps generated by other tools.
.TP
.IR context_switch " (since Linux 4.3)"
.\" commit 45ac1403f564f411c6a383a2448688ba8dd705a4
This enables the generation of
.B PERF_RECORD_SWITCH
records when a context switch occurs.
It also enables the generation of
.B PERF_RECORD_SWITCH_CPU_WIDE
records when sampling in CPU-wide mode.
This functionality is in addition to existing tracepoint and
software events for measuring context switches.
The advantage of this method is that it will give full
information even with strict
.I perf_event_paranoid
settings.
.TP
.IR write_backward " (since Linux 4.6)"
.\" commit 9ecda41acb971ebd07c8fb35faf24005c0baea12
This causes the ring buffer to be written from the end to the beginning.
This is to support reading from overwritable ring buffer.
.TP
.IR namespaces " (since Linux 4.11)"
.\" commit e422267322cd319e2695a535e47c5b1feeac45eb
This enables the generation of
.B PERF_RECORD_NAMESPACES
records when a task enters a new namespace.
Each namespace has a combination of device and inode numbers.
.TP
.IR ksymbol " (since Linux 5.0)"
.\" commit 76193a94522f1d4edf2447a536f3f796ce56343b
This enables the generation of
.B PERF_RECORD_KSYMBOL
records when new kernel symbols are registered or unregistered.
This is analyzing dynamic kernel functions like eBPF.
.TP
.IR bpf_event " (since Linux 5.0)"
.\" commit 6ee52e2a3fe4ea35520720736e6791df1fb67106
This enables the generation of
.B PERF_RECORD_BPF_EVENT
records when an eBPF program is loaded or unloaded.
.TP
.IR aux_output " (since Linux 5.4)"
.\" commit ab43762ef010967e4ccd53627f70a2eecbeafefb
This allows normal (non-AUX) events to generate data for AUX events
if the hardware supports it.
.TP
.IR cgroup " (since Linux 5.7)"
.\" commit 96aaab686505c449e24d76e76507290dcc30e008
This enables the generation of
.B PERF_RECORD_CGROUP
records when a new cgroup is created (and activated).
.TP
.IR text_poke " (since Linux 5.8)"
.\" commit e17d43b93e544f5016c0251d2074c15568d5d963
This enables the generation of
.B PERF_RECORD_TEXT_POKE
records when there's a change to the kernel text
(i.e., self-modifying code).
.TP
.IR build_id " (since Linux 5.12)"
.\" commit 88a16a1309333e43d328621ece3e9fa37027e8eb
This changes the contents in the
.B PERF_RECORD_MMAP2
to have a build-id instead of device and inode numbers.
.TP
.IR inherit_thread " (since Linux 5.13)"
.\" commit 2b26f0aa004995f49f7b6f4100dd0e4c39a9ed5f
This disables the inheritance of the event to a child process.
Only new threads in the same process
(which is cloned with
.BR CLONE_THREAD )
will inherit the event.
.TP
.IR remove_on_exec " (since Linux 5.13)"
.\" commit 2e498d0a74e5b88a6689ae1b811f247f91ff188e
This closes the event when it starts a new process image by
.BR execve (2).
.TP
.IR sigtrap " (since Linux 5.13)"
.\" commit 97ba62b278674293762c3d91f724f1bb922f04e0
This enables synchronous signal delivery of
.B SIGTRAP
on event overflow.
.TP
.I wakeup_events
.TQ
.I wakeup_watermark
This union sets how many samples
.RI ( wakeup_events )
or bytes
.RI ( wakeup_watermark )
happen before an overflow notification happens.
Which one is used is selected by the
.I watermark
bit flag.
.IP
.I wakeup_events
counts only
.B PERF_RECORD_SAMPLE
record types.
To receive overflow notification for all
.B PERF_RECORD
types choose watermark and set
.I wakeup_watermark
to 1.
.IP
Prior to Linux 3.0, setting
.\" commit f506b3dc0ec454a16d40cab9ee5d75435b39dc50
.I wakeup_events
to 0 resulted in no overflow notifications;
more recent kernels treat 0 the same as 1.
.TP
.IR bp_type " (since Linux 2.6.33)"
.\" commit 24f1e32c60c45c89a997c73395b69c8af6f0a84e
This chooses the breakpoint type.
It is one of:
.RS
.TP
.B HW_BREAKPOINT_EMPTY
No breakpoint.
.TP
.B HW_BREAKPOINT_R
Count when we read the memory location.
.TP
.B HW_BREAKPOINT_W
Count when we write the memory location.
.TP
.B HW_BREAKPOINT_RW
Count when we read or write the memory location.
.TP
.B HW_BREAKPOINT_X
Count when we execute code at the memory location.
.P
The values can be combined via a bitwise or, but the
combination of
.B HW_BREAKPOINT_R
or
.B HW_BREAKPOINT_W
with
.B HW_BREAKPOINT_X
is not allowed.
.RE
.TP
.IR bp_addr " (since Linux 2.6.33)"
.\" commit 24f1e32c60c45c89a997c73395b69c8af6f0a84e
This is the address of the breakpoint.
For execution breakpoints, this is the memory address of the instruction
of interest; for read and write breakpoints, it is the memory address
of the memory location of interest.
.TP
.IR config1 " (since Linux 2.6.39)"
.\" commit a7e3ed1e470116c9d12c2f778431a481a6be8ab6
.I config1
is used for setting events that need an extra register or otherwise
do not fit in the regular config field.
Raw OFFCORE_EVENTS on Nehalem/Westmere/SandyBridge use this field
on Linux 3.3 and later kernels.
.TP
.IR bp_len " (since Linux 2.6.33)"
.\" commit 24f1e32c60c45c89a997c73395b69c8af6f0a84e
.I bp_len
is the length of the breakpoint being measured if
.I type
is
.BR PERF_TYPE_BREAKPOINT .
Options are
.BR HW_BREAKPOINT_LEN_1 ,
.BR HW_BREAKPOINT_LEN_2 ,
.BR HW_BREAKPOINT_LEN_4 ,
and
.BR HW_BREAKPOINT_LEN_8 .
For an execution breakpoint, set this to
.IR sizeof(long) .
.TP
.IR config2 " (since Linux 2.6.39)"
.\" commit a7e3ed1e470116c9d12c2f778431a481a6be8ab6
.I config2
is a further extension of the
.I config1
field.
.TP
.IR branch_sample_type " (since Linux 3.4)"
.\" commit bce38cd53e5ddba9cb6d708c4ef3d04a4016ec7e
If
.B PERF_SAMPLE_BRANCH_STACK
is enabled, then this specifies what branches to include
in the branch record.
.IP
The first part of the value is the privilege level, which
is a combination of one of the values listed below.
If the user does not set privilege level explicitly, the kernel
will use the event's privilege level.
Event and branch privilege levels do not have to match.
.RS
.TP
.B PERF_SAMPLE_BRANCH_USER
Branch target is in user space.
.TP
.B PERF_SAMPLE_BRANCH_KERNEL
Branch target is in kernel space.
.TP
.B PERF_SAMPLE_BRANCH_HV
Branch target is in hypervisor.
.TP
.B PERF_SAMPLE_BRANCH_PLM_ALL
A convenience value that is the three preceding values ORed together.
.P
In addition to the privilege value, at least one or more of the
following bits must be set.
.TP
.B PERF_SAMPLE_BRANCH_ANY
Any branch type.
.TP
.B PERF_SAMPLE_BRANCH_ANY_CALL
Any call branch (includes direct calls, indirect calls, and far jumps).
.TP
.B PERF_SAMPLE_BRANCH_IND_CALL
Indirect calls.
.TP
.BR PERF_SAMPLE_BRANCH_CALL " (since Linux 4.4)"
.\" commit c229bf9dc179d2023e185c0f705bdf68484c1e73
Direct calls.
.TP
.B PERF_SAMPLE_BRANCH_ANY_RETURN
Any return branch.
.TP
.BR PERF_SAMPLE_BRANCH_IND_JUMP " (since Linux 4.2)"
.\" commit c9fdfa14c3792c0160849c484e83aa57afd80ccc
Indirect jumps.
.TP
.BR PERF_SAMPLE_BRANCH_COND " (since Linux 3.16)"
.\" commit bac52139f0b7ab31330e98fd87fc5a2664951050
Conditional branches.
.TP
.BR PERF_SAMPLE_BRANCH_ABORT_TX " (since Linux 3.11)"
.\" commit 135c5612c460f89657c4698fe2ea753f6f667963
Transactional memory aborts.
.TP
.BR PERF_SAMPLE_BRANCH_IN_TX " (since Linux 3.11)"
.\" commit 135c5612c460f89657c4698fe2ea753f6f667963
Branch in transactional memory transaction.
.TP
.BR PERF_SAMPLE_BRANCH_NO_TX " (since Linux 3.11)"
.\" commit 135c5612c460f89657c4698fe2ea753f6f667963
Branch not in transactional memory transaction.
.BR PERF_SAMPLE_BRANCH_CALL_STACK " (since Linux 4.1)"
.\" commit 2c44b1936bb3b135a3fac8b3493394d42e51cf70
Branch is part of a hardware-generated call stack.
This requires hardware support, currently only found
on Intel x86 Haswell or newer.
.RE
.TP
.IR sample_regs_user " (since Linux 3.7)"
.\" commit 4018994f3d8785275ef0e7391b75c3462c029e56
This bit mask defines the set of user CPU registers to dump on samples.
The layout of the register mask is architecture-specific and
is described in the kernel header file
.IR arch/ARCH/include/uapi/asm/perf_regs.h .
.TP
.IR sample_stack_user " (since Linux 3.7)"
.\" commit c5ebcedb566ef17bda7b02686e0d658a7bb42ee7
This defines the size of the user stack to dump if
.B PERF_SAMPLE_STACK_USER
is specified.
.TP
.IR clockid " (since Linux 4.1)"
.\" commit 34f439278cef7b1177f8ce24f9fc81dfc6221d3b
If
.I use_clockid
is set, then this field selects which internal Linux timer to
use for timestamps.
The available timers are defined in
.IR linux/time.h ,
with
.BR CLOCK_MONOTONIC ,
.BR CLOCK_MONOTONIC_RAW ,
.BR CLOCK_REALTIME ,
.BR CLOCK_BOOTTIME ,
and
.B CLOCK_TAI
currently supported.
.TP
.IR aux_watermark " (since Linux 4.1)"
.\" commit 1a5941312414c71dece6717da9a0fa1303127afa
This specifies how much data is required to trigger a
.B PERF_RECORD_AUX
sample.
.TP
.IR sample_max_stack " (since Linux 4.8)"
.\" commit 97c79a38cd454602645f0470ffb444b3b75ce574
When
.I sample_type
includes
.BR PERF_SAMPLE_CALLCHAIN ,
this field specifies how many stack frames to report when
generating the callchain.
.TP
.IR aux_sample_size " (since Linux 5.5)"
.\" commit a4faf00d994c40e64f656805ac375c65e324eefb
When
.B PERF_SAMPLE_AUX
flag is set,
specify the desired size of AUX data.
Note that it can get smaller data than the specified size.
.TP
.IR sig_data " (since Linux 5.13)"
.\" commit 97ba62b278674293762c3d91f724f1bb922f04e0
This data will be copied to user's signal handler
(through
.I si_perf
in the
.IR siginfo_t )
to disambiguate which event triggered the signal.
.SS Reading results
Once a
.BR perf_event_open ()
file descriptor has been opened, the values
of the events can be read from the file descriptor.
The values that are there are specified by the
.I read_format
field in the
.I attr
structure at open time.
.P
If you attempt to read into a buffer that is not big enough to hold the
data, the error
.B ENOSPC
results.
.P
Here is the layout of the data returned by a read:
.IP \[bu] 3
If
.B PERF_FORMAT_GROUP
was specified to allow reading all events in a group at once:
.IP
.in +4n
.EX
struct read_format {
    u64 nr;            /* The number of events */
    u64 time_enabled;  /* if PERF_FORMAT_TOTAL_TIME_ENABLED */
    u64 time_running;  /* if PERF_FORMAT_TOTAL_TIME_RUNNING */
    struct {
        u64 value;     /* The value of the event */
        u64 id;        /* if PERF_FORMAT_ID */
        u64 lost;      /* if PERF_FORMAT_LOST */
    } values[nr];
};
.EE
.in
.IP \[bu]
If
.B PERF_FORMAT_GROUP
was
.I not
specified:
.IP
.in +4n
.EX
struct read_format {
    u64 value;         /* The value of the event */
    u64 time_enabled;  /* if PERF_FORMAT_TOTAL_TIME_ENABLED */
    u64 time_running;  /* if PERF_FORMAT_TOTAL_TIME_RUNNING */
    u64 id;            /* if PERF_FORMAT_ID */
    u64 lost;          /* if PERF_FORMAT_LOST */
};
.EE
.in
.P
The values read are as follows:
.TP
.I nr
The number of events in this file descriptor.
Available only if
.B PERF_FORMAT_GROUP
was specified.
.TP
.I time_enabled
.TQ
.I time_running
Total time the event was enabled and running.
Normally these values are the same.
Multiplexing happens if the number of events is more than the
number of available PMU counter slots.
In that case the events run only part of the time and the
.I time_enabled
and
.I time running
values can be used to scale an estimated value for the count.
.TP
.I value
An unsigned 64-bit value containing the counter result.
.TP
.I id
A globally unique value for this particular event; only present if
.B PERF_FORMAT_ID
was specified in
.IR read_format .
.TP
.I lost
The number of lost samples of this event;
only present if
.B PERF_FORMAT_LOST
was specified in
.IR read_format .
.SS MMAP layout
When using
.BR perf_event_open ()
in sampled mode, asynchronous events
(like counter overflow or
.B PROT_EXEC
mmap tracking)
are logged into a ring-buffer.
This ring-buffer is created and accessed through
.BR mmap (2).
.P
The mmap size should be 1+2\[ha]n pages, where the first page is a
metadata page
.RI ( "struct perf_event_mmap_page" )
that contains various
bits of information such as where the ring-buffer head is.
.P
Before Linux 2.6.39, there is a bug that means you must allocate an mmap
ring buffer when sampling even if you do not plan to access it.
.P
The structure of the first metadata mmap page is as follows:
.P
.in +4n
.EX
struct perf_event_mmap_page {
    __u32 version;        /* version number of this structure */
    __u32 compat_version; /* lowest version this is compat with */
    __u32 lock;           /* seqlock for synchronization */
    __u32 index;          /* hardware counter identifier */
    __s64 offset;         /* add to hardware counter value */
    __u64 time_enabled;   /* time event active */
    __u64 time_running;   /* time event on CPU */
    union {
        __u64   capabilities;
        struct {
            __u64 cap_usr_time / cap_usr_rdpmc / cap_bit0 : 1,
                  cap_bit0_is_deprecated : 1,
                  cap_user_rdpmc         : 1,
                  cap_user_time          : 1,
                  cap_user_time_zero     : 1,
        };
    };
    __u16 pmc_width;
    __u16 time_shift;
    __u32 time_mult;
    __u64 time_offset;
    __u64 __reserved[120];   /* Pad to 1 k */
    __u64 data_head;         /* head in the data section */
    __u64 data_tail;         /* user\-space written tail */
    __u64 data_offset;       /* where the buffer starts */
    __u64 data_size;         /* data buffer size */
    __u64 aux_head;
    __u64 aux_tail;
    __u64 aux_offset;
    __u64 aux_size;
\&
}
.EE
.in
.P
The following list describes the fields in the
.I perf_event_mmap_page
structure in more detail:
.TP
.I version
Version number of this structure.
.TP
.I compat_version
The lowest version this is compatible with.
.TP
.I lock
A seqlock for synchronization.
.TP
.I index
A unique hardware counter identifier.
.TP
.I offset
When using rdpmc for reads this offset value
must be added to the one returned by rdpmc to get
the current total event count.
.TP
.I time_enabled
Time the event was active.
.TP
.I time_running
Time the event was running.
.TP
.IR cap_usr_time " / " cap_usr_rdpmc " / " cap_bit0 " (since Linux 3.4)"
.\" commit c7206205d00ab375839bd6c7ddb247d600693c09
There was a bug in the definition of
.I cap_usr_time
and
.I cap_usr_rdpmc
from Linux 3.4 until Linux 3.11.
Both bits were defined to point to the same location, so it was
impossible to know if
.I cap_usr_time
or
.I cap_usr_rdpmc
were actually set.
.IP
Starting with Linux 3.12, these are renamed to
.\" commit fa7315871046b9a4c48627905691dbde57e51033
.I cap_bit0
and you should use the
.I cap_user_time
and
.I cap_user_rdpmc
fields instead.
.TP
.IR cap_bit0_is_deprecated " (since Linux 3.12)"
.\" commit fa7315871046b9a4c48627905691dbde57e51033
If set, this bit indicates that the kernel supports
the properly separated
.I cap_user_time
and
.I cap_user_rdpmc
bits.
.IP
If not-set, it indicates an older kernel where
.I cap_usr_time
and
.I cap_usr_rdpmc
map to the same bit and thus both features should
be used with caution.
.TP
.IR cap_user_rdpmc " (since Linux 3.12)"
.\" commit fa7315871046b9a4c48627905691dbde57e51033
If the hardware supports user-space read of performance counters
without syscall (this is the "rdpmc" instruction on x86), then
the following code can be used to do a read:
.IP
.in +4n
.EX
u32 seq, time_mult, time_shift, idx, width;
u64 count, enabled, running;
u64 cyc, time_offset;
\&
do {
    seq = pc\->lock;
    barrier();
    enabled = pc\->time_enabled;
    running = pc\->time_running;
\&
    if (pc\->cap_usr_time && enabled != running) {
        cyc = rdtsc();
        time_offset = pc\->time_offset;
        time_mult   = pc\->time_mult;
        time_shift  = pc\->time_shift;
    }
\&
    idx = pc\->index;
    count = pc\->offset;
\&
    if (pc\->cap_usr_rdpmc && idx) {
        width = pc\->pmc_width;
        count += rdpmc(idx \- 1);
    }
\&
    barrier();
} while (pc\->lock != seq);
.EE
.in
.TP
.IR cap_user_time " (since Linux 3.12)"
.\" commit fa7315871046b9a4c48627905691dbde57e51033
This bit indicates the hardware has a constant, nonstop
timestamp counter (TSC on x86).
.TP
.IR cap_user_time_zero " (since Linux 3.12)"
.\" commit fa7315871046b9a4c48627905691dbde57e51033
Indicates the presence of
.I time_zero
which allows mapping timestamp values to
the hardware clock.
.TP
.I pmc_width
If
.IR cap_usr_rdpmc ,
this field provides the bit-width of the value
read using the rdpmc or equivalent instruction.
This can be used to sign extend the result like:
.IP
.in +4n
.EX
pmc <<= 64 \- pmc_width;
pmc >>= 64 \- pmc_width; // signed shift right
count += pmc;
.EE
.in
.TP
.I time_shift
.TQ
.I time_mult
.TQ
.I time_offset
.IP
If
.IR cap_usr_time ,
these fields can be used to compute the time
delta since
.I time_enabled
(in nanoseconds) using rdtsc or similar.
.IP
.in +4n
.EX
u64 quot, rem;
u64 delta;
\&
quot  = cyc >> time_shift;
rem   = cyc & (((u64)1 << time_shift) \- 1);
delta = time_offset + quot * time_mult +
        ((rem * time_mult) >> time_shift);
.EE
.in
.IP
Where
.IR time_offset ,
.IR time_mult ,
.IR time_shift ,
and
.I cyc
are read in the
seqcount loop described above.
This delta can then be added to
enabled and possible running (if idx), improving the scaling:
.IP
.in +4n
.EX
enabled += delta;
if (idx)
    running += delta;
quot  = count / running;
rem   = count % running;
count = quot * enabled + (rem * enabled) / running;
.EE
.in
.TP
.IR time_zero " (since Linux 3.12)"
.\" commit fa7315871046b9a4c48627905691dbde57e51033
.IP
If
.I cap_usr_time_zero
is set, then the hardware clock (the TSC timestamp counter on x86)
can be calculated from the
.IR time_zero ,
.IR time_mult ,
and
.I time_shift
values:
.IP
.in +4n
.EX
time = timestamp \- time_zero;
quot = time / time_mult;
rem  = time % time_mult;
cyc  = (quot << time_shift) + (rem << time_shift) / time_mult;
.EE
.in
.IP
And vice versa:
.IP
.in +4n
.EX
quot = cyc >> time_shift;
rem  = cyc & (((u64)1 << time_shift) \- 1);
timestamp = time_zero + quot * time_mult +
            ((rem * time_mult) >> time_shift);
.EE
.in
.TP
.I data_head
This points to the head of the data section.
The value continuously increases, it does not wrap.
The value needs to be manually wrapped by the size of the mmap buffer
before accessing the samples.
.IP
On SMP-capable platforms, after reading the
.I data_head
value,
user space should issue an rmb().
.TP
.I data_tail
When the mapping is
.BR PROT_WRITE ,
the
.I data_tail
value should be written by user space to reflect the last read data.
In this case, the kernel will not overwrite unread data.
.TP
.IR data_offset " (since Linux 4.1)"
.\" commit e8c6deac69629c0cb97c3d3272f8631ef17f8f0f
Contains the offset of the location in the mmap buffer
where perf sample data begins.
.TP
.IR data_size " (since Linux 4.1)"
.\" commit e8c6deac69629c0cb97c3d3272f8631ef17f8f0f
Contains the size of the perf sample region within
the mmap buffer.
.TP
.I aux_head
.TQ
.I aux_tail
.TQ
.I aux_offset
.TQ
.I aux_size " (since Linux 4.1)"
.\" commit 45bfb2e50471abbbfd83d40d28c986078b0d24ff
The AUX region allows
.BR mmap (2)-ing
a separate sample buffer for
high-bandwidth data streams (separate from the main perf sample buffer).
An example of a high-bandwidth stream is instruction tracing support,
as is found in newer Intel processors.
.IP
To set up an AUX area, first
.I aux_offset
needs to be set with an offset greater than
.IR data_offset + data_size
and
.I aux_size
needs to be set to the desired buffer size.
The desired offset and size must be page aligned, and the size
must be a power of two.
These values are then passed to mmap in order to map the AUX buffer.
Pages in the AUX buffer are included as part of the
.B RLIMIT_MEMLOCK
resource limit (see
.BR setrlimit (2)),
and also as part of the
.I perf_event_mlock_kb
allowance.
.IP
By default, the AUX buffer will be truncated if it will not fit
in the available space in the ring buffer.
If the AUX buffer is mapped as a read only buffer, then it will
operate in ring buffer mode where old data will be overwritten
by new.
In overwrite mode, it might not be possible to infer where the
new data began, and it is the consumer's job to disable
measurement while reading to avoid possible data races.
.IP
The
.I aux_head
and
.I aux_tail
ring buffer pointers have the same behavior and ordering
rules as the previous described
.I data_head
and
.IR data_tail .
.P
The following 2^n ring-buffer pages have the layout described below.
.P
If
.I perf_event_attr.sample_id_all
is set, then all event types will
have the sample_type selected fields related to where/when (identity)
an event took place (TID, TIME, ID, CPU, STREAM_ID) described in
.B PERF_RECORD_SAMPLE
below, it will be stashed just after the
.I perf_event_header
and the fields already present for the existing
fields, that is, at the end of the payload.
This allows a newer perf.data
file to be supported by older perf tools, with the new optional
fields being ignored.
.P
The mmap values start with a header:
.P
.in +4n
.EX
struct perf_event_header {
    __u32   type;
    __u16   misc;
    __u16   size;
};
.EE
.in
.P
Below, we describe the
.I perf_event_header
fields in more detail.
For ease of reading,
the fields with shorter descriptions are presented first.
.TP
.I size
This indicates the size of the record.
.TP
.I misc
The
.I misc
field contains additional information about the sample.
.IP
The CPU mode can be determined from this value by masking with
.B PERF_RECORD_MISC_CPUMODE_MASK
and looking for one of the following (note these are not
bit masks, only one can be set at a time):
.RS
.TP
.B PERF_RECORD_MISC_CPUMODE_UNKNOWN
Unknown CPU mode.
.TP
.B PERF_RECORD_MISC_KERNEL
Sample happened in the kernel.
.TP
.B PERF_RECORD_MISC_USER
Sample happened in user code.
.TP
.B PERF_RECORD_MISC_HYPERVISOR
Sample happened in the hypervisor.
.TP
.BR PERF_RECORD_MISC_GUEST_KERNEL " (since Linux 2.6.35)"
.\" commit 39447b386c846bbf1c56f6403c5282837486200f
Sample happened in the guest kernel.
.TP
.B PERF_RECORD_MISC_GUEST_USER " (since Linux 2.6.35)"
.\" commit 39447b386c846bbf1c56f6403c5282837486200f
Sample happened in guest user code.
.RE
.P
.RS
Since the following three statuses are generated by
different record types, they alias to the same bit:
.TP
.BR PERF_RECORD_MISC_MMAP_DATA " (since Linux 3.10)"
.\" commit 2fe85427e3bf65d791700d065132772fc26e4d75
This is set when the mapping is not executable;
otherwise the mapping is executable.
.TP
.BR PERF_RECORD_MISC_COMM_EXEC " (since Linux 3.16)"
.\" commit 82b897782d10fcc4930c9d4a15b175348fdd2871
This is set for a
.B PERF_RECORD_COMM
record on kernels more recent than Linux 3.16
if a process name change was caused by an
.BR execve (2)
system call.
.TP
.BR PERF_RECORD_MISC_SWITCH_OUT " (since Linux 4.3)"
.\" commit 45ac1403f564f411c6a383a2448688ba8dd705a4
When a
.B PERF_RECORD_SWITCH
or
.B PERF_RECORD_SWITCH_CPU_WIDE
record is generated, this bit indicates that the
context switch is away from the current process
(instead of into the current process).
.RE
.P
.RS
In addition, the following bits can be set:
.TP
.B PERF_RECORD_MISC_EXACT_IP
This indicates that the content of
.B PERF_SAMPLE_IP
points
to the actual instruction that triggered the event.
See also
.IR perf_event_attr.precise_ip .
.TP
.BR PERF_RECORD_MISC_SWITCH_OUT_PREEMPT " (since Linux 4.17)"
.\" commit 101592b4904ecf6b8ed2a4784d41d180319d95a1
When a
.B PERF_RECORD_SWITCH
or
.B PERF_RECORD_SWITCH_CPU_WIDE
record is generated,
this indicates the context switch was a preemption.
.TP
.BR PERF_RECORD_MISC_MMAP_BUILD_ID " (since Linux 5.12)"
.\" commit 88a16a1309333e43d328621ece3e9fa37027e8eb
This indicates that the content of
.B PERF_SAMPLE_MMAP2
contains build-ID data instead of device major and minor numbers
as well as the inode number.
.TP
.BR PERF_RECORD_MISC_EXT_RESERVED " (since Linux 2.6.35)"
.\" commit 1676b8a077c352085d52578fb4f29350b58b6e74
This indicates there is extended data available (currently not used).
.TP
.B PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT
.\" commit 930e6fcd2bcce9bcd9d4aa7e755678d33f3fe6f4
This bit is not set by the kernel.
It is reserved for the user-space perf utility to indicate that
.IR /proc/ pid /maps
parsing was taking too long and was stopped, and thus the mmap
records may be truncated.
.RE
.TP
.I type
The
.I type
value is one of the below.
The values in the corresponding record (that follows the header)
depend on the
.I type
selected as shown.
.RS
.TP 4
.B PERF_RECORD_MMAP
The MMAP events record the
.B PROT_EXEC
mappings so that we can correlate
user-space IPs to code.
They have the following structure:
.IP
.in +4n
.EX
struct {
    struct perf_event_header header;
    u32    pid, tid;
    u64    addr;
    u64    len;
    u64    pgoff;
    char   filename[];
};
.EE
.in
.RS
.TP
.I pid
is the process ID.
.TP
.I tid
is the thread ID.
.TP
.I addr
is the address of the allocated memory.
.I len
is the length of the allocated memory.
.I pgoff
is the page offset of the allocated memory.
.I filename
is a string describing the backing of the allocated memory.
.RE
.TP
.B PERF_RECORD_LOST
This record indicates when events are lost.
.IP
.in +4n
.EX
struct {
    struct perf_event_header header;
    u64    id;
    u64    lost;
    struct sample_id sample_id;
};
.EE
.in
.RS
.TP
.I id
is the unique event ID for the samples that were lost.
.TP
.I lost
is the number of events that were lost.
.RE
.TP
.B PERF_RECORD_COMM
This record indicates a change in the process name.
.IP
.in +4n
.EX
struct {
    struct perf_event_header header;
    u32    pid;
    u32    tid;
    char   comm[];
    struct sample_id sample_id;
};
.EE
.in
.RS
.TP
.I pid
is the process ID.
.TP
.I tid
is the thread ID.
.TP
.I comm
is a string containing the new name of the process.
.RE
.TP
.B PERF_RECORD_EXIT
This record indicates a process exit event.
.IP
.in +4n
.EX
struct {
    struct perf_event_header header;
    u32    pid, ppid;
    u32    tid, ptid;
    u64    time;
    struct sample_id sample_id;
};
.EE
.in
.TP
.B PERF_RECORD_THROTTLE
.TQ
.B PERF_RECORD_UNTHROTTLE
This record indicates a throttle/unthrottle event.
.IP
.in +4n
.EX
struct {
    struct perf_event_header header;
    u64    time;
    u64    id;
    u64    stream_id;
    struct sample_id sample_id;
};
.EE
.in
.TP
.B PERF_RECORD_FORK
This record indicates a fork event.
.IP
.in +4n
.EX
struct {
    struct perf_event_header header;
    u32    pid, ppid;
    u32    tid, ptid;
    u64    time;
    struct sample_id sample_id;
};
.EE
.in
.TP
.B PERF_RECORD_READ
This record indicates a read event.
.IP
.in +4n
.EX
struct {
    struct perf_event_header header;
    u32    pid, tid;
    struct read_format values;
    struct sample_id sample_id;
};
.EE
.in
.TP
.B PERF_RECORD_SAMPLE
This record indicates a sample.
.IP
.in +4n
.EX
struct {
    struct perf_event_header header;
    u64    sample_id;   /* if PERF_SAMPLE_IDENTIFIER */
    u64    ip;          /* if PERF_SAMPLE_IP */
    u32    pid, tid;    /* if PERF_SAMPLE_TID */
    u64    time;        /* if PERF_SAMPLE_TIME */
    u64    addr;        /* if PERF_SAMPLE_ADDR */
    u64    id;          /* if PERF_SAMPLE_ID */
    u64    stream_id;   /* if PERF_SAMPLE_STREAM_ID */
    u32    cpu, res;    /* if PERF_SAMPLE_CPU */
    u64    period;      /* if PERF_SAMPLE_PERIOD */
    struct read_format v;
                        /* if PERF_SAMPLE_READ */
    u64    nr;          /* if PERF_SAMPLE_CALLCHAIN */
    u64    ips[nr];     /* if PERF_SAMPLE_CALLCHAIN */
    u32    size;        /* if PERF_SAMPLE_RAW */
    char   data[size];  /* if PERF_SAMPLE_RAW */
    u64    bnr;         /* if PERF_SAMPLE_BRANCH_STACK */
    struct perf_branch_entry lbr[bnr];
                        /* if PERF_SAMPLE_BRANCH_STACK */
    u64    abi;         /* if PERF_SAMPLE_REGS_USER */
    u64    regs[weight(mask)];
                        /* if PERF_SAMPLE_REGS_USER */
    u64    size;        /* if PERF_SAMPLE_STACK_USER */
    char   data[size];  /* if PERF_SAMPLE_STACK_USER */
    u64    dyn_size;    /* if PERF_SAMPLE_STACK_USER &&
                           size != 0 */
    union perf_sample_weight weight;
                        /* if PERF_SAMPLE_WEIGHT */
                        /* || PERF_SAMPLE_WEIGHT_STRUCT */
    u64    data_src;    /* if PERF_SAMPLE_DATA_SRC */
    u64    transaction; /* if PERF_SAMPLE_TRANSACTION */
    u64    abi;         /* if PERF_SAMPLE_REGS_INTR */
    u64    regs[weight(mask)];
                        /* if PERF_SAMPLE_REGS_INTR */
    u64    phys_addr;   /* if PERF_SAMPLE_PHYS_ADDR */
    u64    cgroup;      /* if PERF_SAMPLE_CGROUP */
    u64    data_page_size;
                      /* if PERF_SAMPLE_DATA_PAGE_SIZE */
    u64    code_page_size;
                      /* if PERF_SAMPLE_CODE_PAGE_SIZE */
    u64    size;        /* if PERF_SAMPLE_AUX */
    char   data[size];  /* if PERF_SAMPLE_AUX */
};
.EE
.in
.RS 4
.TP 4
.I sample_id
If
.B PERF_SAMPLE_IDENTIFIER
is enabled, a 64-bit unique ID is included.
This is a duplication of the
.B PERF_SAMPLE_ID
.I id
value, but included at the beginning of the sample
so parsers can easily obtain the value.
.TP
.I ip
If
.B PERF_SAMPLE_IP
is enabled, then a 64-bit instruction
pointer value is included.
.TP
.I pid
.TQ
.I tid
If
.B PERF_SAMPLE_TID
is enabled, then a 32-bit process ID
and 32-bit thread ID are included.
.TP
.I time
If
.B PERF_SAMPLE_TIME
is enabled, then a 64-bit timestamp
is included.
This is obtained via local_clock() which is a hardware timestamp
if available and the jiffies value if not.
.TP
.I addr
If
.B PERF_SAMPLE_ADDR
is enabled, then a 64-bit address is included.
This is usually the address of a tracepoint,
breakpoint, or software event; otherwise the value is 0.
.TP
.I id
If
.B PERF_SAMPLE_ID
is enabled, a 64-bit unique ID is included.
If the event is a member of an event group, the group leader ID is returned.
This ID is the same as the one returned by
.BR PERF_FORMAT_ID .
.TP
.I stream_id
If
.B PERF_SAMPLE_STREAM_ID
is enabled, a 64-bit unique ID is included.
Unlike
.B PERF_SAMPLE_ID
the actual ID is returned, not the group leader.
This ID is the same as the one returned by
.BR PERF_FORMAT_ID .
.TP
.I cpu
.TQ
.I res
If
.B PERF_SAMPLE_CPU
is enabled, this is a 32-bit value indicating
which CPU was being used, in addition to a reserved (unused)
32-bit value.
.TP
.I period
If
.B PERF_SAMPLE_PERIOD
is enabled, a 64-bit value indicating
the current sampling period is written.
.TP
.I v
If
.B PERF_SAMPLE_READ
is enabled, a structure of type read_format
is included which has values for all events in the event group.
The values included depend on the
.I read_format
value used at
.BR perf_event_open ()
time.
.TP
.I nr
.TQ
.I ips[nr]
If
.B PERF_SAMPLE_CALLCHAIN
is enabled, then a 64-bit number is included
which indicates how many following 64-bit instruction pointers will
follow.
This is the current callchain.
.TP
.I size
.TQ
.I data[size]
If
.B PERF_SAMPLE_RAW
is enabled, then a 32-bit value indicating size
is included followed by an array of 8-bit values of length size.
The values are padded with 0 to have 64-bit alignment.
.IP
This RAW record data is opaque with respect to the ABI.
The ABI doesn't make any promises with respect to the stability
of its content, it may vary depending
on event, hardware, and kernel version.
.TP
.I bnr
.TQ
.I lbr[bnr]
If
.B PERF_SAMPLE_BRANCH_STACK
is enabled, then a 64-bit value indicating
the number of records is included, followed by
.I bnr
.I perf_branch_entry
structures which each include the fields:
.RS
.TP
.I from
This indicates the source instruction (may not be a branch).
.TP
.I to
The branch target.
.TP
.I mispred
The branch target was mispredicted.
.TP
.I predicted
The branch target was predicted.
.TP
.IR in_tx " (since Linux 3.11)"
.\" commit 135c5612c460f89657c4698fe2ea753f6f667963
The branch was in a transactional memory transaction.
.TP
.IR abort " (since Linux 3.11)"
.\" commit 135c5612c460f89657c4698fe2ea753f6f667963
The branch was in an aborted transactional memory transaction.
.TP
.IR cycles " (since Linux 4.3)"
.\" commit 71ef3c6b9d4665ee7afbbe4c208a98917dcfc32f
This reports the number of cycles elapsed since the
previous branch stack update.
.P
The entries are from most to least recent, so the first entry
has the most recent branch.
.P
Support for
.IR mispred ,
.IR predicted ,
and
.I cycles
is optional; if not supported, those
values will be 0.
.P
The type of branches recorded is specified by the
.I branch_sample_type
field.
.RE
.TP
.I abi
.TQ
.I regs[weight(mask)]
If
.B PERF_SAMPLE_REGS_USER
is enabled, then the user CPU registers are recorded.
.IP
The
.I abi
field is one of
.BR PERF_SAMPLE_REGS_ABI_NONE ,
.BR PERF_SAMPLE_REGS_ABI_32 ,
or
.BR PERF_SAMPLE_REGS_ABI_64 .
.IP
The
.I regs
field is an array of the CPU registers that were specified by
the
.I sample_regs_user
attr field.
The number of values is the number of bits set in the
.I sample_regs_user
bit mask.
.TP
.I size
.TQ
.I data[size]
.TQ
.I dyn_size
If
.B PERF_SAMPLE_STACK_USER
is enabled, then the user stack is recorded.
This can be used to generate stack backtraces.
.I size
is the size requested by the user in
.I sample_stack_user
or else the maximum record size.
.I data
is the stack data (a raw dump of the memory pointed to by the
stack pointer at the time of sampling).
.I dyn_size
is the amount of data actually dumped (can be less than
.IR size ).
Note that
.I dyn_size
is omitted if
.I size
is 0.
.TP
.I weight
If
.B PERF_SAMPLE_WEIGHT
or
.B PERF_SAMPLE_WEIGHT_STRUCT
is enabled, then a 64-bit value provided by the hardware
is recorded that indicates how costly the event was.
This allows expensive events to stand out more clearly
in profiles.
.TP
.I data_src
If
.B PERF_SAMPLE_DATA_SRC
is enabled, then a 64-bit value is recorded that is made up of
the following fields:
.RS
.TP 4
.I mem_op
Type of opcode, a bitwise combination of:
.IP
.PD 0
.RS
.TP 24
.B PERF_MEM_OP_NA
Not available
.TP
.B PERF_MEM_OP_LOAD
Load instruction
.TP
.B PERF_MEM_OP_STORE
Store instruction
.TP
.B PERF_MEM_OP_PFETCH
Prefetch
.TP
.B PERF_MEM_OP_EXEC
Executable code
.RE
.PD
.TP
.I mem_lvl
Memory hierarchy level hit or miss, a bitwise combination of
the following, shifted left by
.BR PERF_MEM_LVL_SHIFT :
.IP
.PD 0
.RS
.TP 24
.B PERF_MEM_LVL_NA
Not available
.TP
.B PERF_MEM_LVL_HIT
Hit
.TP
.B PERF_MEM_LVL_MISS
Miss
.TP
.B PERF_MEM_LVL_L1
Level 1 cache
.TP
.B PERF_MEM_LVL_LFB
Line fill buffer
.TP
.B PERF_MEM_LVL_L2
Level 2 cache
.TP
.B PERF_MEM_LVL_L3
Level 3 cache
.TP
.B PERF_MEM_LVL_LOC_RAM
Local DRAM
.TP
.B PERF_MEM_LVL_REM_RAM1
Remote DRAM 1 hop
.TP
.B PERF_MEM_LVL_REM_RAM2
Remote DRAM 2 hops
.TP
.B PERF_MEM_LVL_REM_CCE1
Remote cache 1 hop
.TP
.B PERF_MEM_LVL_REM_CCE2
Remote cache 2 hops
.TP
.B PERF_MEM_LVL_IO
I/O memory
.TP
.B PERF_MEM_LVL_UNC
Uncached memory
.RE
.PD
.TP
.I mem_snoop
Snoop mode, a bitwise combination of the following, shifted left by
.BR PERF_MEM_SNOOP_SHIFT :
.IP
.PD 0
.RS
.TP 24
.B PERF_MEM_SNOOP_NA
Not available
.TP
.B PERF_MEM_SNOOP_NONE
No snoop
.TP
.B PERF_MEM_SNOOP_HIT
Snoop hit
.TP
.B PERF_MEM_SNOOP_MISS
Snoop miss
.TP
.B PERF_MEM_SNOOP_HITM
Snoop hit modified
.RE
.PD
.TP
.I mem_lock
Lock instruction, a bitwise combination of the following, shifted left by
.BR PERF_MEM_LOCK_SHIFT :
.IP
.PD 0
.RS
.TP 24
.B PERF_MEM_LOCK_NA
Not available
.TP
.B PERF_MEM_LOCK_LOCKED
Locked transaction
.RE
.PD
.TP
.I mem_dtlb
TLB access hit or miss, a bitwise combination of the following, shifted
left by
.BR PERF_MEM_TLB_SHIFT :
.IP
.PD 0
.RS
.TP 24
.B PERF_MEM_TLB_NA
Not available
.TP
.B PERF_MEM_TLB_HIT
Hit
.TP
.B PERF_MEM_TLB_MISS
Miss
.TP
.B PERF_MEM_TLB_L1
Level 1 TLB
.TP
.B PERF_MEM_TLB_L2
Level 2 TLB
.TP
.B PERF_MEM_TLB_WK
Hardware walker
.TP
.B PERF_MEM_TLB_OS
OS fault handler
.RE
.PD
.RE
.TP
.I transaction
If the
.B PERF_SAMPLE_TRANSACTION
flag is set, then a 64-bit field is recorded describing
the sources of any transactional memory aborts.
.IP
The field is a bitwise combination of the following values:
.RS
.TP
.B PERF_TXN_ELISION
Abort from an elision type transaction (Intel-CPU-specific).
.TP
.B PERF_TXN_TRANSACTION
Abort from a generic transaction.
.TP
.B PERF_TXN_SYNC
Synchronous abort (related to the reported instruction).
.TP
.B PERF_TXN_ASYNC
Asynchronous abort (not related to the reported instruction).
.TP
.B PERF_TXN_RETRY
Retryable abort (retrying the transaction may have succeeded).
.TP
.B PERF_TXN_CONFLICT
Abort due to memory conflicts with other threads.
.TP
.B PERF_TXN_CAPACITY_WRITE
Abort due to write capacity overflow.
.TP
.B PERF_TXN_CAPACITY_READ
Abort due to read capacity overflow.
.RE
.IP
In addition, a user-specified abort code can be obtained from
the high 32 bits of the field by shifting right by
.B PERF_TXN_ABORT_SHIFT
and masking with the value
.BR PERF_TXN_ABORT_MASK .
.TP
.I abi
.TQ
.I regs[weight(mask)]
If
.B PERF_SAMPLE_REGS_INTR
is enabled, then the user CPU registers are recorded.
.IP
The
.I abi
field is one of
.BR PERF_SAMPLE_REGS_ABI_NONE ,
.BR PERF_SAMPLE_REGS_ABI_32 ,
or
.BR PERF_SAMPLE_REGS_ABI_64 .
.IP
The
.I regs
field is an array of the CPU registers that were specified by
the
.I sample_regs_intr
attr field.
The number of values is the number of bits set in the
.I sample_regs_intr
bit mask.
.TP
.I phys_addr
If the
.B PERF_SAMPLE_PHYS_ADDR
flag is set, then the 64-bit physical address is recorded.
.TP
.I cgroup
If the
.B PERF_SAMPLE_CGROUP
flag is set,
then the 64-bit cgroup ID (for the perf_event subsystem) is recorded.
To get the pathname of the cgroup, the ID should match to one in a
.BR PERF_RECORD_CGROUP .
.TP
.I data_page_size
If the
.B PERF_SAMPLE_DATA_PAGE_SIZE
flag is set,
then the 64-bit page size value of the
.B data
address is recorded.
.TP
.I code_page_size
If the
.B PERF_SAMPLE_CODE_PAGE_SIZE
flag is set,
then the 64-bit page size value of the
.B ip
address is recorded.
.TP
.I size
.TQ
.IR data [ size ]
If
.B PERF_SAMPLE_AUX
is enabled,
a snapshot of the aux buffer is recorded.
.RE
.TP
.B PERF_RECORD_MMAP2
This record includes extended information on
.BR mmap (2)
calls returning executable mappings.
The format is similar to that of the
.B PERF_RECORD_MMAP
record, but includes extra values that allow uniquely identifying
shared mappings.
Depending on the
.B PERF_RECORD_MISC_MMAP_BUILD_ID
bit in the header,
the extra values have different layout and meanings.
.IP
.in +4n
.EX
struct {
    struct perf_event_header header;
    u32    pid;
    u32    tid;
    u64    addr;
    u64    len;
    u64    pgoff;
    union {
        struct {
            u32    maj;
            u32    min;
            u64    ino;
            u64    ino_generation;
        };
        struct {   /* if PERF_RECORD_MISC_MMAP_BUILD_ID */
            u8     build_id_size;
            u8     __reserved_1;
            u16    __reserved_2;
            u8     build_id[20];
        };
    };
    u32    prot;
    u32    flags;
    char   filename[];
    struct sample_id sample_id;
};
.EE
.in
.RS
.TP
.I pid
is the process ID.
.TP
.I tid
is the thread ID.
.TP
.I addr
is the address of the allocated memory.
.TP
.I len
is the length of the allocated memory.
.TP
.I pgoff
is the page offset of the allocated memory.
.TP
.I maj
is the major ID of the underlying device.
.TP
.I min
is the minor ID of the underlying device.
.TP
.I ino
is the inode number.
.TP
.I ino_generation
is the inode generation.
.TP
.I build_id_size
is the actual size of
.I build_id
field (up to 20).
.TP
.I build_id
is a raw data to identify a binary.
.TP
.I prot
is the protection information.
.TP
.I flags
is the flags information.
.TP
.I filename
is a string describing the backing of the allocated memory.
.RE
.TP
.BR PERF_RECORD_AUX " (since Linux 4.1)"
.\" commit 68db7e98c3a6ebe7284b6cf14906ed7c55f3f7f0
This record reports that new data is available in the separate
AUX buffer region.
.IP
.in +4n
.EX
struct {
    struct perf_event_header header;
    u64    aux_offset;
    u64    aux_size;
    u64    flags;
    struct sample_id sample_id;
};
.EE
.in
.RS
.TP
.I aux_offset
offset in the AUX mmap region where the new data begins.
.TP
.I aux_size
size of the data made available.
.TP
.I flags
describes the AUX update.
.RS
.TP
.B PERF_AUX_FLAG_TRUNCATED
if set, then the data returned was truncated to fit the available
buffer size.
.TP
.B PERF_AUX_FLAG_OVERWRITE
.\" commit 2023a0d2829e521fe6ad6b9907f3f90bfbf57142
if set, then the data returned has overwritten previous data.
.RE
.RE
.TP
.BR PERF_RECORD_ITRACE_START " (since Linux 4.1)"
.\" ec0d7729bbaed4b9d2d3fada693278e13a3d1368
This record indicates which process has initiated an instruction
trace event, allowing tools to properly correlate the instruction
addresses in the AUX buffer with the proper executable.
.IP
.in +4n
.EX
struct {
    struct perf_event_header header;
    u32    pid;
    u32    tid;
};
.EE
.in
.RS
.TP
.I pid
process ID of the thread starting an instruction trace.
.TP
.I tid
thread ID of the thread starting an instruction trace.
.RE
.TP
.BR PERF_RECORD_LOST_SAMPLES " (since Linux 4.2)"
.\" f38b0dbb491a6987e198aa6b428db8692a6480f8
When using hardware sampling (such as Intel PEBS) this record
indicates some number of samples that may have been lost.
.IP
.in +4n
.EX
struct {
    struct perf_event_header header;
    u64    lost;
    struct sample_id sample_id;
};
.EE
.in
.RS
.TP
.I lost
the number of potentially lost samples.
.RE
.TP
.BR PERF_RECORD_SWITCH " (since Linux 4.3)"
.\" commit 45ac1403f564f411c6a383a2448688ba8dd705a4
This record indicates a context switch has happened.
The
.B PERF_RECORD_MISC_SWITCH_OUT
bit in the
.I misc
field indicates whether it was a context switch into
or away from the current process.
.IP
.in +4n
.EX
struct {
    struct perf_event_header header;
    struct sample_id sample_id;
};
.EE
.in
.TP
.BR PERF_RECORD_SWITCH_CPU_WIDE " (since Linux 4.3)"
.\" commit 45ac1403f564f411c6a383a2448688ba8dd705a4
As with
.B PERF_RECORD_SWITCH
this record indicates a context switch has happened,
but it only occurs when sampling in CPU-wide mode
and provides additional information on the process
being switched to/from.
The
.B PERF_RECORD_MISC_SWITCH_OUT
bit in the
.I misc
field indicates whether it was a context switch into
or away from the current process.
.IP
.in +4n
.EX
struct {
    struct perf_event_header header;
    u32 next_prev_pid;
    u32 next_prev_tid;
    struct sample_id sample_id;
};
.EE
.in
.RS
.TP
.I next_prev_pid
The process ID of the previous (if switching in)
or next (if switching out) process on the CPU.
.TP
.I next_prev_tid
The thread ID of the previous (if switching in)
or next (if switching out) thread on the CPU.
.RE
.TP
.BR PERF_RECORD_NAMESPACES " (since Linux 4.11)"
.\" commit e422267322cd319e2695a535e47c5b1feeac45eb
This record includes various namespace information of a process.
.IP
.in +4n
.EX
struct {
    struct perf_event_header header;
    u32    pid;
    u32    tid;
    u64    nr_namespaces;
    struct { u64 dev, inode } [nr_namespaces];
    struct sample_id sample_id;
};
.EE
.in
.RS
.TP
.I pid
is the process ID
.TP
.I tid
is the thread ID
.TP
.I nr_namespace
is the number of namespaces in this record
.RE
.IP
Each namespace has
.I dev
and
.I inode
fields and is recorded in the
fixed position like below:
.RS
.TP
.BR NET_NS_INDEX = 0
Network namespace
.TP
.BR UTS_NS_INDEX = 1
UTS namespace
.TP
.BR IPC_NS_INDEX = 2
IPC namespace
.TP
.BR PID_NS_INDEX = 3
PID namespace
.TP
.BR USER_NS_INDEX = 4
User namespace
.TP
.BR MNT_NS_INDEX = 5
Mount namespace
.TP
.BR CGROUP_NS_INDEX = 6
Cgroup namespace
.RE
.TP
.BR PERF_RECORD_KSYMBOL " (since Linux 5.0)"
.\" commit 76193a94522f1d4edf2447a536f3f796ce56343b
This record indicates kernel symbol register/unregister events.
.IP
.in +4n
.EX
struct {
    struct perf_event_header header;
    u64    addr;
    u32    len;
    u16    ksym_type;
    u16    flags;
    char   name[];
    struct sample_id sample_id;
};
.EE
.in
.RS
.TP
.I addr
is the address of the kernel symbol.
.TP
.I len
is the length of the kernel symbol.
.TP
.I ksym_type
is the type of the kernel symbol.
Currently the following types are available:
.RS
.TP
.B PERF_RECORD_KSYMBOL_TYPE_BPF
The kernel symbol is a BPF function.
.RE
.TP
.I flags
If the
.B PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER
is set, then this event is for unregistering the kernel symbol.
.RE
.TP
.BR PERF_RECORD_BPF_EVENT " (since Linux 5.0)"
.\" commit 6ee52e2a3fe4ea35520720736e6791df1fb67106
This record indicates BPF program is loaded or unloaded.
.IP
.in +4n
.EX
struct {
    struct perf_event_header header;
    u16 type;
    u16 flags;
    u32 id;
    u8 tag[BPF_TAG_SIZE];
    struct sample_id sample_id;
};
.EE
.in
.RS
.TP
.I type
is one of the following values:
.RS
.TP
.B PERF_BPF_EVENT_PROG_LOAD
A BPF program is loaded
.TP
.B PERF_BPF_EVENT_PROG_UNLOAD
A BPF program is unloaded
.RE
.TP
.I id
is the ID of the BPF program.
.TP
.I tag
is the tag of the BPF program.
Currently,
.B BPF_TAG_SIZE
is defined as 8.
.RE
.TP
.BR PERF_RECORD_CGROUP " (since Linux 5.7)"
.\" commit 96aaab686505c449e24d76e76507290dcc30e008
This record indicates a new cgroup is created and activated.
.IP
.in +4n
.EX
struct {
    struct perf_event_header header;
    u64    id;
    char   path[];
    struct sample_id sample_id;
};
.EE
.in
.RS
.TP
.I id
is the cgroup identifier.
This can be also retrieved by
.BR name_to_handle_at (2)
on the cgroup path (as a file handle).
.TP
.I path
is the path of the cgroup from the root.
.RE
.TP
.BR PERF_RECORD_TEXT_POKE " (since Linux 5.8)"
.\" commit e17d43b93e544f5016c0251d2074c15568d5d963
This record indicates a change in the kernel text.
This includes addition and removal of the text
and the corresponding length is zero in this case.
.IP
.in +4n
.EX
struct {
    struct perf_event_header header;
    u64    addr;
    u16    old_len;
    u16    new_len;
    u8     bytes[];
    struct sample_id sample_id;
};
.EE
.in
.RS
.TP
.I addr
is the address of the change
.TP
.I old_len
is the old length
.TP
.I new_len
is the new length
.TP
.I bytes
contains old bytes immediately followed by new bytes.
.RE
.RE
.SS Overflow handling
Events can be set to notify when a threshold is crossed,
indicating an overflow.
Overflow conditions can be captured by monitoring the
event file descriptor with
.BR poll (2),
.BR select (2),
or
.BR epoll (7).
Alternatively, the overflow events can be captured via sa signal handler,
by enabling I/O signaling on the file descriptor; see the discussion of the
.B F_SETOWN
and
.B F_SETSIG
operations in
.BR fcntl (2).
.P
Overflows are generated only by sampling events
.RI ( sample_period
must have a nonzero value).
.P
There are two ways to generate overflow notifications.
.P
The first is to set a
.I wakeup_events
or
.I wakeup_watermark
value that will trigger if a certain number of samples
or bytes have been written to the mmap ring buffer.
In this case,
.B POLL_IN
is indicated.
.P
The other way is by use of the
.B PERF_EVENT_IOC_REFRESH
ioctl.
This ioctl adds to a counter that decrements each time the event overflows.
When nonzero,
.B POLL_IN
is indicated, but
once the counter reaches 0
.B POLL_HUP
is indicated and
the underlying event is disabled.
.P
Refreshing an event group leader refreshes all siblings and
refreshing with a parameter of 0 currently enables infinite
refreshes;
these behaviors are unsupported and should not be relied on.
.\" See https://lkml.org/lkml/2011/5/24/337
.P
Starting with Linux 3.18,
.\" commit 179033b3e064d2cd3f5f9945e76b0a0f0fbf4883
.B POLL_HUP
is indicated if the event being monitored is attached to a different
process and that process exits.
.SS rdpmc instruction
Starting with Linux 3.4 on x86, you can use the
.\" commit c7206205d00ab375839bd6c7ddb247d600693c09
.I rdpmc
instruction to get low-latency reads without having to enter the kernel.
Note that using
.I rdpmc
is not necessarily faster than other methods for reading event values.
.P
Support for this can be detected with the
.I cap_usr_rdpmc
field in the mmap page; documentation on how
to calculate event values can be found in that section.
.P
Originally, when rdpmc support was enabled, any process (not just ones
with an active perf event) could use the rdpmc instruction to access
the counters.
Starting with Linux 4.0,
.\" 7911d3f7af14a614617e38245fedf98a724e46a9
rdpmc support is only allowed if an event is currently enabled
in a process's context.
To restore the old behavior, write the value 2 to
.IR /sys/devices/cpu/rdpmc .
.SS perf_event ioctl calls
Various ioctls act on
.BR perf_event_open ()
file descriptors:
.TP
.B PERF_EVENT_IOC_ENABLE
This enables the individual event or event group specified by the
file descriptor argument.
.IP
If the
.B PERF_IOC_FLAG_GROUP
bit is set in the ioctl argument, then all events in a group are
enabled, even if the event specified is not the group leader
(but see BUGS).
.TP
.B PERF_EVENT_IOC_DISABLE
This disables the individual counter or event group specified by the
file descriptor argument.
.IP
Enabling or disabling the leader of a group enables or disables the
entire group; that is, while the group leader is disabled, none of the
counters in the group will count.
Enabling or disabling a member of a group other than the leader
affects only that counter; disabling a non-leader
stops that counter from counting but doesn't affect any other counter.
.IP
If the
.B PERF_IOC_FLAG_GROUP
bit is set in the ioctl argument, then all events in a group are
disabled, even if the event specified is not the group leader
(but see BUGS).
.TP
.B PERF_EVENT_IOC_REFRESH
Non-inherited overflow counters can use this
to enable a counter for a number of overflows specified by the argument,
after which it is disabled.
Subsequent calls of this ioctl add the argument value to the current
count.
An overflow notification with
.B POLL_IN
set will happen on each overflow until the
count reaches 0; when that happens a notification with
.B POLL_HUP
set is sent and the event is disabled.
Using an argument of 0 is considered undefined behavior.
.TP
.B PERF_EVENT_IOC_RESET
Reset the event count specified by the
file descriptor argument to zero.
This resets only the counts; there is no way to reset the
multiplexing
.I time_enabled
or
.I time_running
values.
.IP
If the
.B PERF_IOC_FLAG_GROUP
bit is set in the ioctl argument, then all events in a group are
reset, even if the event specified is not the group leader
(but see BUGS).
.TP
.B PERF_EVENT_IOC_PERIOD
This updates the overflow period for the event.
.IP
Since Linux 3.7 (on ARM)
.\" commit 3581fe0ef37ce12ac7a4f74831168352ae848edc
and Linux 3.14 (all other architectures),
.\" commit bad7192b842c83e580747ca57104dd51fe08c223
the new period takes effect immediately.
On older kernels, the new period did not take effect until
after the next overflow.
.IP
The argument is a pointer to a 64-bit value containing the
desired new period.
.IP
Prior to Linux 2.6.36,
.\" commit ad0cf3478de8677f720ee06393b3147819568d6a
this ioctl always failed due to a bug
in the kernel.
.TP
.B PERF_EVENT_IOC_SET_OUTPUT
This tells the kernel to report event notifications to the specified
file descriptor rather than the default one.
The file descriptors must all be on the same CPU.
.IP
The argument specifies the desired file descriptor, or \-1 if
output should be ignored.
.TP
.BR PERF_EVENT_IOC_SET_FILTER " (since Linux 2.6.33)"
.\" commit 6fb2915df7f0747d9044da9dbff5b46dc2e20830
This adds an ftrace filter to this event.
.IP
The argument is a pointer to the desired ftrace filter.
.TP
.BR PERF_EVENT_IOC_ID " (since Linux 3.12)"
.\" commit cf4957f17f2a89984915ea808876d9c82225b862
This returns the event ID value for the given event file descriptor.
.IP
The argument is a pointer to a 64-bit unsigned integer
to hold the result.
.TP
.BR PERF_EVENT_IOC_SET_BPF " (since Linux 4.1)"
.\" commit 2541517c32be2531e0da59dfd7efc1ce844644f5
This allows attaching a Berkeley Packet Filter (BPF)
program to an existing kprobe tracepoint event.
You need
.B CAP_PERFMON
(since Linux 5.8) or
.B CAP_SYS_ADMIN
privileges to use this ioctl.
.IP
The argument is a BPF program file descriptor that was created by
a previous
.BR bpf (2)
system call.
.TP
.BR PERF_EVENT_IOC_PAUSE_OUTPUT " (since Linux 4.7)"
.\" commit 86e7972f690c1017fd086cdfe53d8524e68c661c
This allows pausing and resuming the event's ring-buffer.
A paused ring-buffer does not prevent generation of samples,
but simply discards them.
The discarded samples are considered lost, and cause a
.B PERF_RECORD_LOST
sample to be generated when possible.
An overflow signal may still be triggered by the discarded sample
even though the ring-buffer remains empty.
.IP
The argument is an unsigned 32-bit integer.
A nonzero value pauses the ring-buffer, while a
zero value resumes the ring-buffer.
.TP
.BR PERF_EVENT_MODIFY_ATTRIBUTES " (since Linux 4.17)"
.\" commit 32ff77e8cc9e66cc4fb38098f64fd54cc8f54573
This allows modifying an existing event without the overhead
of closing and reopening a new event.
Currently this is supported only for breakpoint events.
.IP
The argument is a pointer to a
.I perf_event_attr
structure containing the updated event settings.
.TP
.BR PERF_EVENT_IOC_QUERY_BPF " (since Linux 4.16)"
.\" commit f371b304f12e31fe30207c41ca7754564e0ea4dc
This allows querying which Berkeley Packet Filter (BPF)
programs are attached to an existing kprobe tracepoint.
You can only attach one BPF program per event, but you can
have multiple events attached to a tracepoint.
Querying this value on one tracepoint event returns the ID
of all BPF programs in all events attached to the tracepoint.
You need
.B CAP_PERFMON
(since Linux 5.8) or
.B CAP_SYS_ADMIN
privileges to use this ioctl.
.IP
The argument is a pointer to a structure
.in +4n
.EX
struct perf_event_query_bpf {
    __u32    ids_len;
    __u32    prog_cnt;
    __u32    ids[0];
};
.EE
.in
.IP
The
.I ids_len
field indicates the number of ids that can fit in the provided
.I ids
array.
The
.I prog_cnt
value is filled in by the kernel with the number of attached
BPF programs.
The
.I ids
array is filled with the ID of each attached BPF program.
If there are more programs than will fit in the array, then the
kernel will return
.B ENOSPC
and
.I ids_len
will indicate the number of program IDs that were successfully copied.
.\"
.SS Using prctl(2)
A process can enable or disable all currently open event groups
using the
.BR prctl (2)
.B PR_TASK_PERF_EVENTS_ENABLE
and
.B PR_TASK_PERF_EVENTS_DISABLE
operations.
This applies only to events created locally by the calling process.
This does not apply to events created by other processes attached
to the calling process or inherited events from a parent process.
Only group leaders are enabled and disabled,
not any other members of the groups.
.SS perf_event related configuration files
Files in
.I /proc/sys/kernel/
.RS 4
.TP
.I /proc/sys/kernel/perf_event_paranoid
The
.I perf_event_paranoid
file can be set to restrict access to the performance counters.
.IP
.PD 0
.RS
.TP
.B 2
allow only user-space measurements (default since Linux 4.6).
.\" default changed in commit 0161028b7c8aebef64194d3d73e43bc3b53b5c66
.TP
.B 1
allow both kernel and user measurements (default before Linux 4.6).
.TP
.B 0
allow access to CPU-specific data but not raw tracepoint samples.
.TP
.B \-1
no restrictions.
.RE
.PD
.IP
The existence of the
.I perf_event_paranoid
file is the official method for determining if a kernel supports
.BR perf_event_open ().
.TP
.I /proc/sys/kernel/perf_event_max_sample_rate
This sets the maximum sample rate.
Setting this too high can allow
users to sample at a rate that impacts overall machine performance
and potentially lock up the machine.
The default value is
100000 (samples per second).
.TP
.I /proc/sys/kernel/perf_event_max_stack
.\" Introduced in c5dfd78eb79851e278b7973031b9ca363da87a7e
This file sets the maximum depth of stack frame entries reported
when generating a call trace.
.TP
.I /proc/sys/kernel/perf_event_mlock_kb
Maximum number of pages an unprivileged user can
.BR mlock (2).
The default is 516 (kB).
.RE
.P
Files in
.I /sys/bus/event_source/devices/
.P
.RS 4
Since Linux 2.6.34, the kernel supports having multiple PMUs
available for monitoring.
Information on how to program these PMUs can be found under
.IR /sys/bus/event_source/devices/ .
Each subdirectory corresponds to a different PMU.
.TP
.IR /sys/bus/event_source/devices/*/type " (since Linux 2.6.38)"
.\" commit abe43400579d5de0078c2d3a760e6598e183f871
This contains an integer that can be used in the
.I type
field of
.I perf_event_attr
to indicate that you wish to use this PMU.
.TP
.IR /sys/bus/event_source/devices/cpu/rdpmc " (since Linux 3.4)"
.\" commit 0c9d42ed4cee2aa1dfc3a260b741baae8615744f
If this file is 1, then direct user-space access to the
performance counter registers is allowed via the rdpmc instruction.
This can be disabled by echoing 0 to the file.
.IP
As of Linux 4.0
.\" a66734297f78707ce39d756b656bfae861d53f62
.\" 7911d3f7af14a614617e38245fedf98a724e46a9
the behavior has changed, so that 1 now means only allow access
to processes with active perf events, with 2 indicating the old
allow-anyone-access behavior.
.TP
.IR /sys/bus/event_source/devices/*/format/ " (since Linux 3.4)"
.\" commit 641cc938815dfd09f8fa1ec72deb814f0938ac33
This subdirectory contains information on the architecture-specific
subfields available for programming the various
.I config
fields in the
.I perf_event_attr
struct.
.IP
The content of each file is the name of the config field, followed
by a colon, followed by a series of integer bit ranges separated by
commas.
For example, the file
.I event
may contain the value
.I config1:1,6\-10,44
which indicates that event is an attribute that occupies bits 1,6\[en]10, and 44
of
.IR perf_event_attr::config1 .
.TP
.IR /sys/bus/event_source/devices/*/events/ " (since Linux 3.4)"
.\" commit 641cc938815dfd09f8fa1ec72deb814f0938ac33
This subdirectory contains files with predefined events.
The contents are strings describing the event settings
expressed in terms of the fields found in the previously mentioned
.I ./format/
directory.
These are not necessarily complete lists of all events supported by
a PMU, but usually a subset of events deemed useful or interesting.
.IP
The content of each file is a list of attribute names
separated by commas.
Each entry has an optional value (either hex or decimal).
If no value is specified, then it is assumed to be a single-bit
field with a value of 1.
An example entry may look like this:
.IR event=0x2,inv,ldlat=3 .
.TP
.I /sys/bus/event_source/devices/*/uevent
This file is the standard kernel device interface
for injecting hotplug events.
.TP
.IR /sys/bus/event_source/devices/*/cpumask " (since Linux 3.7)"
.\" commit 314d9f63f385096580e9e2a06eaa0745d92fe4ac
The
.I cpumask
file contains a comma-separated list of integers that
indicate a representative CPU number for each socket (package)
on the motherboard.
This is needed when setting up uncore or northbridge events, as
those PMUs present socket-wide events.
.RE
.SH RETURN VALUE
On success,
.BR perf_event_open ()
returns the new file descriptor.
On error, \-1 is returned and
.I errno
is set to indicate the error.
.SH ERRORS
The errors returned by
.BR perf_event_open ()
can be inconsistent, and may
vary across processor architectures and performance monitoring units.
.TP
.B E2BIG
Returned if the
.I perf_event_attr
.I size
value is too small
(smaller than
.BR PERF_ATTR_SIZE_VER0 ),
too big (larger than the page size),
or larger than the kernel supports and the extra bytes are not zero.
When
.B E2BIG
is returned, the
.I perf_event_attr
.I size
field is overwritten by the kernel to be the size of the structure
it was expecting.
.TP
.B EACCES
Returned when the requested event requires
.B CAP_PERFMON
(since Linux 5.8) or
.B CAP_SYS_ADMIN
permissions (or a more permissive perf_event paranoid setting).
Some common cases where an unprivileged process
may encounter this error:
attaching to a process owned by a different user;
monitoring all processes on a given CPU (i.e., specifying the
.I pid
argument as \-1);
and not setting
.I exclude_kernel
when the paranoid setting requires it.
.TP
.B EBADF
Returned if the
.I group_fd
file descriptor is not valid, or, if
.B PERF_FLAG_PID_CGROUP
is set,
the cgroup file descriptor in
.I pid
is not valid.
.TP
.BR EBUSY " (since Linux 4.1)"
.\" bed5b25ad9c8a2f5d735ef0bc746ec870c01c1b0
Returned if another event already has exclusive
access to the PMU.
.TP
.B EFAULT
Returned if the
.I attr
pointer points at an invalid memory address.
.TP
.B EINTR
Returned when trying to mix perf and ftrace handling
for a uprobe.
.TP
.B EINVAL
Returned if the specified event is invalid.
There are many possible reasons for this.
A not-exhaustive list:
.I sample_freq
is higher than the maximum setting;
the
.I cpu
to monitor does not exist;
.I read_format
is out of range;
.I sample_type
is out of range;
the
.I flags
value is out of range;
.I exclusive
or
.I pinned
set and the event is not a group leader;
the event
.I config
values are out of range or set reserved bits;
the generic event selected is not supported; or
there is not enough room to add the selected event.
.TP
.B EMFILE
Each opened event uses one file descriptor.
If a large number of events are opened,
the per-process limit on the number of open file descriptors will be reached,
and no more events can be created.
.TP
.B ENODEV
Returned when the event involves a feature not supported
by the current CPU.
.TP
.B ENOENT
Returned if the
.I type
setting is not valid.
This error is also returned for
some unsupported generic events.
.TP
.B ENOSPC
Prior to Linux 3.3, if there was not enough room for the event,
.\" commit aa2bc1ade59003a379ffc485d6da2d92ea3370a6
.B ENOSPC
was returned.
In Linux 3.3, this was changed to
.BR EINVAL .
.B ENOSPC
is still returned if you try to add more breakpoint events
than supported by the hardware.
.TP
.B ENOSYS
Returned if
.B PERF_SAMPLE_STACK_USER
is set in
.I sample_type
and it is not supported by hardware.
.TP
.B EOPNOTSUPP
Returned if an event requiring a specific hardware feature is
requested but there is no hardware support.
This includes requesting low-skid events if not supported,
branch tracing if it is not available, sampling if no PMU
interrupt is available, and branch stacks for software events.
.TP
.BR EOVERFLOW " (since Linux 4.8)"
.\" 97c79a38cd454602645f0470ffb444b3b75ce574
Returned if
.B PERF_SAMPLE_CALLCHAIN
is requested and
.I sample_max_stack
is larger than the maximum specified in
.IR /proc/sys/kernel/perf_event_max_stack .
.TP
.B EPERM
Returned on many (but not all) architectures when an unsupported
.IR exclude_hv ", " exclude_idle ", " exclude_user ", or " exclude_kernel
setting is specified.
.IP
It can also happen, as with
.BR EACCES ,
when the requested event requires
.B CAP_PERFMON
(since Linux 5.8) or
.B CAP_SYS_ADMIN
permissions (or a more permissive perf_event paranoid setting).
This includes setting a breakpoint on a kernel address,
and (since Linux 3.13) setting a kernel function-trace tracepoint.
.\" commit a4e95fc2cbb31d70a65beffeaf8773f881328c34
.TP
.B ESRCH
Returned if attempting to attach to a process that does not exist.
.SH STANDARDS
Linux.
.SH HISTORY
.BR perf_event_open ()
was introduced in Linux 2.6.31 but was called
.\" commit 0793a61d4df8daeac6492dbf8d2f3e5713caae5e
.BR perf_counter_open ().
It was renamed in Linux 2.6.32.
.\" commit cdd6c482c9ff9c55475ee7392ec8f672eddb7be6
.SH NOTES
The official way of knowing if
.BR perf_event_open ()
support is enabled is checking
for the existence of the file
.IR /proc/sys/kernel/perf_event_paranoid .
.P
.B CAP_PERFMON
capability (since Linux 5.8) provides secure approach to
performance monitoring and observability operations in a system
according to the principal of least privilege (POSIX IEEE 1003.1e).
Accessing system performance monitoring and observability operations
using
.B CAP_PERFMON
rather than the much more powerful
.B CAP_SYS_ADMIN
excludes chances to misuse credentials and makes operations more secure.
.B CAP_SYS_ADMIN
usage for secure system performance monitoring and observability
is discouraged in favor of the
.B CAP_PERFMON
capability.
.SH BUGS
The
.B F_SETOWN_EX
option to
.BR fcntl (2)
is needed to properly get overflow signals in threads.
This was introduced in Linux 2.6.32.
.\" commit ba0a6c9f6fceed11c6a99e8326f0477fe383e6b5
.P
Prior to Linux 2.6.33 (at least for x86),
.\" commit b690081d4d3f6a23541493f1682835c3cd5c54a1
the kernel did not check
if events could be scheduled together until read time.
The same happens on all known kernels if the NMI watchdog is enabled.
This means to see if a given set of events works you have to
.BR perf_event_open (),
start, then read before you know for sure you
can get valid measurements.
.P
Prior to Linux 2.6.34,
.\" FIXME . cannot find a kernel commit for this one
event constraints were not enforced by the kernel.
In that case, some events would silently return "0" if the kernel
scheduled them in an improper counter slot.
.P
Prior to Linux 2.6.34, there was a bug when multiplexing where the
wrong results could be returned.
.\" commit 45e16a6834b6af098702e5ea6c9a40de42ff77d8
.P
Kernels from Linux 2.6.35 to Linux 2.6.39 can quickly crash the kernel if
"inherit" is enabled and many threads are started.
.\" commit 38b435b16c36b0d863efcf3f07b34a6fac9873fd
.P
Prior to Linux 2.6.35,
.\" commit 050735b08ca8a016bbace4445fa025b88fee770b
.B PERF_FORMAT_GROUP
did not work with attached processes.
.P
There is a bug in the kernel code between
Linux 2.6.36 and Linux 3.0 that ignores the
"watermark" field and acts as if a wakeup_event
was chosen if the union has a
nonzero value in it.
.\" commit 4ec8363dfc1451f8c8f86825731fe712798ada02
.P
From Linux 2.6.31 to Linux 3.4, the
.B PERF_IOC_FLAG_GROUP
ioctl argument was broken and would repeatedly operate
on the event specified rather than iterating across
all sibling events in a group.
.\" commit 724b6daa13e100067c30cfc4d1ad06629609dc4e
.P
From Linux 3.4 to Linux 3.11, the mmap
.\" commit fa7315871046b9a4c48627905691dbde57e51033
.I cap_usr_rdpmc
and
.I cap_usr_time
bits mapped to the same location.
Code should migrate to the new
.I cap_user_rdpmc
and
.I cap_user_time
fields instead.
.P
Always double-check your results!
Various generalized events have had wrong values.
For example, retired branches measured
the wrong thing on AMD machines until Linux 2.6.35.
.\" commit f287d332ce835f77a4f5077d2c0ef1e3f9ea42d2
.SH EXAMPLES
The following is a short example that measures the total
instruction count of a call to
.BR printf (3).
.P
.\" SRC BEGIN (perf_event_open.c)
.EX
#include <linux/perf_event.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <unistd.h>
\&
static long
perf_event_open(struct perf_event_attr *hw_event, pid_t pid,
                int cpu, int group_fd, unsigned long flags)
{
    int ret;
\&
    ret = syscall(SYS_perf_event_open, hw_event, pid, cpu,
                  group_fd, flags);
    return ret;
}
\&
int
main(void)
{
    int                     fd;
    long long               count;
    struct perf_event_attr  pe;
\&
    memset(&pe, 0, sizeof(pe));
    pe.type = PERF_TYPE_HARDWARE;
    pe.size = sizeof(pe);
    pe.config = PERF_COUNT_HW_INSTRUCTIONS;
    pe.disabled = 1;
    pe.exclude_kernel = 1;
    pe.exclude_hv = 1;
\&
    fd = perf_event_open(&pe, 0, \-1, \-1, 0);
    if (fd == \-1) {
       fprintf(stderr, "Error opening leader %llx\en", pe.config);
       exit(EXIT_FAILURE);
    }
\&
    ioctl(fd, PERF_EVENT_IOC_RESET, 0);
    ioctl(fd, PERF_EVENT_IOC_ENABLE, 0);
\&
    printf("Measuring instruction count for this printf\en");
\&
    ioctl(fd, PERF_EVENT_IOC_DISABLE, 0);
    read(fd, &count, sizeof(count));
\&
    printf("Used %lld instructions\en", count);
\&
    close(fd);
}
.EE
.\" SRC END
.SH SEE ALSO
.BR perf (1),
.BR fcntl (2),
.BR mmap (2),
.BR open (2),
.BR prctl (2),
.BR read (2)
.P
.I Documentation/admin\-guide/perf\-security.rst
in the kernel source tree